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1. Introduction

My objective in this paper is to give some of the basic results in the theory of bifurca-
tion in differential equations. It is difficult to trace the historical development of any im-

portant concept and bifurcation theory is no exception. However, a careful study of litera-
ture shows that Poincar6 111, 12] and Liapunov [11, [2] are responsible for our present

basic philosophy as well as several of the fundamental ideas of the methods that we pres-
ently employ. These two persons can be directly linked with the importance of exchanges

of stability, the occurrence of complicated motions in dynamical systems, the principle of

reduction to lower dimensional problems, the philosophy of genericity and the transforma-

tion theory of differential equations that is so important in obtaining approximations of the
center manifold and the flow on the center manifold. In many respects, we are still exploit-

ing the ideas of these two giants.

After the initial impetus of Poincard and Liapunov, it is somewhat surprising that
modern bifurcation theory did not appear at an earlier date. It is perhaps true that the

ideas of Liapunov connected with bifurcation theory were being developed more extensively

than the corresponding ones of Poincard. There was a very active group in the U.S.S.R.
(consisting of Andronov, Vitt, Khaikin, Bogoliubov, Krylov, Leontovich, Malkin and others)

working on critical cases in stability theory, nonlinear oscillations and the general theory of
integral manifolds. The techniques developed from the study of these areas are fundamental

ingredients in dynamic bifurcation theory (see Hale [I for some references).

A fundamental step towards modern bifurcation theory in differential equations oc-
curred with the definition of structural stability of Andronov and Pontrjagin [1] in 1937
and the classification of structurally stable systems in the plane. With these concepts, An-
dronov and Leontovich [1] were able to make precise definitions of types of bifurcation

points which had the possibility of being classified. These results were applied extensively
to the theory of nonlinear oscillations by Andronov, Vitt and Khaikin in 1937 (the second
edition of this book is Andronov, Vitt and Khaikin [I]). As Minorsky [I] said in 1962:

"Having established the initial advance in the field of nonlinear oscillations (up to 1940), the
Russian scientists maintain their leadership and initiative characterized by a remarkable co-

ordination of efforts between the mathematical and experimental parts of these fundamental

researches." There were several important developments in this intervening period by Levin-

son [1, [2], Cartwright and Littlewood (see Cartwright [I) on the forced van der Pol and
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Lienard equations. Hokwever, in western Europe and the United States, the interest in this

aspect of differential equations had never been very extensive. In addition, there was little

awareness of the developments that had been made in the U.S.S.R., and, as a consequence,

some duplication of effort occurred.

Since 1960, there have been extensive developments in the abstract theory of dynami-

cal systems. At the same time, some of this theory has been applied to very interesting

problems in the biological and physical sciences. In an attempt to explain phenomena that

occur in nature, it has been necessary for researchers to discuss the dynamic bifurcation of

specific types of equations in great detail. This has led to an exciting interaction between

analytical and theoretical methods.

In this paper, we present some of the concepts and results that play an important role

in these areas. When the dimension of the system is one or two, one can obtain a rather

complete theory at least for general one parameter families of vector fields. For either

several parameter problems or for the dimension of the system greater than two, only par-

tial results are known. On the other hand, the results in low dimension are applicable to

higher dimensional problems (even infinite dimensional ones) when the discussion is restricted

to a neighborhood of an equilibrium point for which the theory of center manifolds can be

employed.
The table of contents expresses in general terms the substance of this paper. The first

eight sections deal with structural stability and bifurcation in the low dimensional problems

mentioned above. §9 is devoted to the formulation of some of the basic problems in the

qualitative theory for a special class of dynamical systems in infinite dimensions. This class

is general enough to include many functional differential equations and partial differential

equations. § 10 is concerned primarily with some types of bifurcation that occur because

the base space is infinite dimensional. Due to space, very few proofs are given. Also, there

are several important omissions of topics from differential equations that are systematically

used throughout, but which are not as well known as they should be. Most notable among

these are the general theory of integral manifolds (for general references, see Hale [I1I). the

center manifold theorem (see Kelley [I1I), the theory of transformation to normal forms

(for references, see Bibikov [11], Br'juno [11], Henrard [I] and the general method of

averaging (for references, see Hale [I1]).
The author is endebted to many colleagues and students whose ideas have been incor-

porated into these notes-too many to mention by name. He also acknowledges the initia-

tive of Professor Laksmikantham in proposing the CBMS Regional Conference. Finally,

Sandra Spinacci has exhibited her usual patience and understanding in the preparation of the

final manuscript.



2. On the definition of bifurcation

Suppose X Z are topological spaces, U C X is open, A is an open set in a topological

space and f: U x A -- Z is a given continuous function. Let

S = {(x. X) E U x A: f(x, X) = O}

be the set of solutions of the equation f(x, X) = 0. For a fixed X, let

S, {x: (x, X) E S}

be the "cross-section" of the solution set at X.

The basic problem is to discuss the dependence of the set S. on X. In a specific prob-

lem, one has a prescription which compares S; with S. for different ) and g. This com-

parison is usually made by means of an equivalence relation which divides the sets {S,, , X E A}

into equivalence classes. Given the function f and an equivalence relation -, we say X0 is a

bifurcation point for (f, -) if, for any neighborhood V of X0, there are X, X2 e V such

that SAL It SA2. This definition is less general than the one in Marsden [11.
A special case is when the equivalence relation specifies that Sk - S- if the sets S.

and S. are homeomorphic. This is a very convenient choice when studying the change in

the structure of the set of equilibrium points in a differential equation as parameters are

varied. In this case, the function f represents the vector field in a differential equation
dx/dt = f(x, X). It is also appropriate in differential equations for the study of the set of

solutions of some prescribed type; for example, periodic solutions, invariant tori, etc. In

this latter case, the topological spaces are defined so that they include only those functions

which exhibit this prescribed behavior and the function f could be the differential operator.

f(x. X) = dx/dt - g(x. X).
To study more general bifurcations in differential equations, the equivalence defined

by homeomorphism is not sufficient. Consider a differential equation du/dt - g(u, X) = 0

where (u, X) E R x A and 11 is an open set in some Banach space E. For X, Z Banach spaces

of functions from [0, -c) to E, let U C X be defined by U = fu E X: u(t) E QZ, t E [0. o),

The above equation can be written formally as f(u, X) = 0 where f: U x A - Z, f(u, X Xt)

= du(t)Idt - g(u(t), X). Assuming everything can be made rigorous and that all solutions

are obtained in this way, a comparison of the corresponding sets SX and S. by homeomor-

phism will not be very interesting. Thus an alternative approach must be taken.

Suppose the differential equation generates a strongly continuous semigroup T,(t),

t 0, on 92. A frequently used concept of equivalence in differential equations is to say



4 JACK K. HALE

that g(', X) - g(-, M) if there is a homeomorphism I: 92 -* 02 such that It maps orbits of
T,(t) onto orbits of Tm(t) preserving the sense of direction in time. A vector field g(.. X )
is structurally stable if there is a neighborhood V of X0 such that g(., X) - g(-, Xo) for all
X E V. Thus, X0 is a bifurcation point if X0 is not structurally stable.

A different but equivalent formulation of the above concept of equivalence in differen-
tial equations was introduced by Andronov and Pontrjagin II in 1937 for differential equa-
tions in the plane. They gave a characterization of the structurally stable vector fields which
will be discussed later. Peixoto [I I generalized these results to arbitrary compact two di-

mensional manifolds a.d proved the set of structurally stable vector fields is open and dense.
For some time, it was the feeling that this same property should hold true for arbitrary sys-

tems. Unfortunately, it was shown by Smale [1] that structurally stable vector fields are
not dense in dimension >, 4. Williams [I] proved the same result for n > 3. Since many
vector fields cannot be compared by this equivalence relation, it becomes necessary to

weaken the concept of equivalence. Each new definition of equivalence leads to a new type

of stable vector field (ones which are equivalent to everyone in a neighborhood of it) and
thus a new type of bifurcation. The ultimate goal is to have the definition restrictive enough
to permit classification of the stable ones, but, at the same time, to have the stable vector

fields generic; that is, the intersection of a countable sequence of open dense sets. Much of

the research in finite dimensional abstract dynamical systems in the last twenty years has

been devoted to this general problem. Relevant references are Smale [2], Peixoto [2], [3],
Palis and Melo [11, Newhouse [11, Nitecki [11, Shub [11, Guckenheimer fi, Arnol'd [11.
In the next section, we give more specific details.

When the evolutionary equation is infinite dimensional, several new problems arise.
This case will be discussed in a later section.



3. Structural stability and generic properties in R"

Suppose 12 is an open set in R" with aaI = r, T2 = s2 U r.

The space C"(5, R") is the Banach space of functions bounded and continuous to-

gether with all derivatives up through order r > 0 with the norm of f in C'(T2, R") being
given by the maximum of the supremum over T2 of the norm of f and its derivatives up

through order r. Let X, = X (5) be the set of elements of Cr(S2, R") which are transver-
sal to r. For any fE Xr, r > 1, the differential equation

(3.1) x = f(x)

defines a family of transformations Tf(t) on 5 satisfying the semigroup property with

Tf(t)x o = x(t, xo), where x(t, xo ) is the solution of (3.1) with x(O, x o ) = xo . Further-
more, for each xo E T2, there are an a.,, 0, Pxo > 0, such that the maximal interval of

definition of Tf(t)x o is [aO, 01o). The number axo is either that value ao where

Tf(*,o)Xo E a92 = r or -- and in this case the interval [ao, Pxo) is (-oo, xo)" The

number 1,0 is defined in a similar way in the positive direction. The operator Tf(t) on

satisfies Tf(O) = 1 the identity, Tf(t + s)x = Tf(t)Tf(s)x for those t, s for which it is
meaningful and Tf(t)x has continuous derivatives up through order r in t, x.

The orbit yf(x) off through x is

-ff(x) = U { Tf(tOx, t E [a,, #x ]

The co-limit set cof(x) and a-limit set af(x) of the orbit yf(x) are defined by

wf(x) = fn ci U Tf(t)x, ao(x) = fl ci U Tf(t)x.

An equilibrium point or critical point of f is a zero of f A periodic orbit of f is an orbit
which is a closed curve. A set M C T is invariant if, for each x C M, Tf(t)x is defined for

t E (--, -,) and belongs to M for t E (--,, -c). This implies Tf(t)M = M for t G (- 00. o).

The vector fields in (3.1) are chosen from Xr; that is, are transversal to F, in order
to eliminate technical difficulties with points of contact on P. We are discussing the vector

fields in Rn , but many of the remarks hold for vector fields on compact manifolds M.

DEFINITION 3.1. Two vector fields f g in X", r > 1, are equivalent, f - g, if there

is a homeomorphism h: F2 -b F1 such that h maps the orbits defined by f homeomorphic-

ally onto the orbits defined by g with the sense of direction in time preserved. An f E Xnr

1 _ __ - . ,- - -66
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is said to be structurally stable if there is a neighborhood U of fsuch that f - g for every

g E U. An fE X" is a bifurcation point iffis not structurally stable.
Two important remarks need to be made about this definition. Definition 3.1 would

not be meaningful without the condition r > I. In fact, for r = 0, given any vector field f
that has an isolated zero at x. and any e > 0, there are a 6 > 0 and a function g such that

If-gI < e and g(x) = 0 for Ix - x.1 < 6. Therefore, no f with an isolated zero could be

structurally stable.
In Definition 3.! , it is tempting to require that the mapping h be a diffeomorphism.

However, if f(O) = 0, g(O) = 0, af(O)/ax = A, ag(o)/ax = B, and f - g in a neighborhood
of zero, then one can show (see Peixoto [2], [41) that the eigenvalues of A and B must be

proportional. Since one can always make a small perturbation that will change one eigen-
value of A and not the other, it follows that no vector field with a zero could be structurally

stable. Thus, the Definition 3.1 would have little meaning. If x0 is a critical point of f and

A = 3f(x0 )1ax, then x0 is said to be hyperbolic if the real parts of the eigenvalues of A

have nonzero real parts. The point x. is a saddle point of order k, if it is hyperbolic and

there are k eigenvalues of A with positive real parts. The term saddle point without the

designation of the order will refer to any saddle point of order k with k *- 0 or n.

If n = 2, a saddle point of order I corresponds to the usual definition of saddle point.
For n = 2, a saddle point of order 0 or 2 corresponds to a node or focus depending upon

whether the eigenvalues of A are real or complex.
If - is a periodic orbit of f, then one can define a Poincare map near - in the following

way. For any arc C transversal to - at po and any p E C sufficiently near po, there is a

unique r(p) > 0 such that Tf(r(p))p E C, Tf(t)p 4 C for 0 < t < r(p). The map p

Tf(r(p))p is called the Poincar6 map 7r(p). This map in Cr and r(po) = po. The periodic
orbit 'y is hyperbolic if no eigenvalue of arr(po)/ap has modulus one.

If n = 2, the periodic orbit -y is hyperbolic if dir(po)/dp I 1. It is instructive to give

an equivalent definition in terms of the vector field itself. If y = [0(t). t E R) where 0(t)

is periodic of least period w and 0(t) = f(o(t)) then the linear variational equation for 0 is

(3.2) .P = A(t)y, A(t) = af(o(t))/ax.

One characteristic multiplier of this w-periodic system is I since ¢ satisfies (3.2). If X(t) is

a principal matrix solution of (3.2), then the product of the multipliers is equal to det X(W).
Thus, if p.. = exp wa. ., ao real, is the other multiplier, then

(3.3) 0' = f' tr A(s) ds.

One can then easily show that y is hyperbolic if and only if a.. * 0, unstable if aof > 0 and

asymptotically orbitally stable if a.Y < 0.
For two dimensional systems, the following result of Andronov and Pontrjagin I].

Peixoto [I , completely solves the problem of structural stability in X.
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THEOREM 3.2. I j-r C X", r > 1, is the set of structurally stable vector fields in X',
then f E 2;r if and only if the following conditions are satisfied:

(i) The critical points off are hyperbolic.
(i0 The periodic orbits off are hyperbolic.

(iii) There is no orbit of f with both the a- and w-limit sets being saddle points.
Furthermore, 1' is open and dense in X .

The fact that a structurally stable vector field must satisfy (i)-(iii) is very easy to
prove. However, the converse is more difficult and relies heavily upon the following result

of Hartman (II, (31 Grobman (11, and its extension to diffeomorphisms which is valid in
the space of n-dimensional vector fields X',.

THEOREM 3.3 (HARTMANGROBMAN). If f E Xn, r > 1, f(xo) = 0, and the eigen-
values of A = af(x0 )1ax have nonzero real parts then, in a neighborhood of x0 , f is equiva-
lent to the linear equation i = Ax.

In Theorem 3.2, the fact that X' is open follows from the definition and the fact that
it is dense follows from an argument in transversality theory. See Peixoto (II for a coin-
plete proof.

Condition (i), the Implicit Function Theorem and the compactness of 2 imply that

fE V has only a finite number of critical points. Using (ii), (iii) and similar arguments, one
shows there is only a finite number of periodic orbits.

The simplicity of the .escription of the structurally stable systems in two dimensions
given by Theorem 3.2 permits a complete classification in terms of certain distinguished

graphs (see Peixoto [41).
To what extent does Theorem 3.2 hold in dimension n > 3? As remarked earlier, the

structurally stable systems are not dense in X " for n > 3. This was proved by Smale I I
for n > 4 and by Williams I1] for n > 3. However, there are structurally stable systems in

every dimension and on every type of n-dimensional manifold.
Even though 2; is not dense, it is very important to classify structurally stable vector

fields and to find "simple" classes of vector fields which are generic. Let us turn first to

the problem of genericity.
The concepts (i), (ii) in Theorem 2 have meaning in R". Also, (iii) can be ex-

tended in the following way. For any hyperbolic critical point or periodic orbit of a
vector field f E X,, one can define the global stable and unstable manifolds in the fol-

lowing way. The stable (unstable) manifold of a hyperbolic critical point x0 is the set

of x E T2 such that Tf(t)x - xo as t - +oa (-oo). Similar definitions are given for a
periodic orbit.

In R2 , condition (iii) is then equivalent to the statement that the stable and unstable

manifolds of all critical points and periodic orbits intersect transversally. One can then ask
if the vector fields in X, which satisfy these properties are generic in X" . The answer is
yes and is the famous theorem of Kupka (1] and Smale (31.
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THEOREM 3.4 (KUI'KA-SMALE). The set of vector fields in X r for which the critical
points and periodic orbits are hyperbolic with stable and unstable manifolds intersecting
transversally is generic.

Any vector field satisfying the conditions of Theorem 3.4 will be called a Kupka.Smale
(KS) vector field. They can have only a finite number of critical points with the proof being
the same as in two dimensions. However, in contrast to two dimensions, there can be an
infinite number of periodic orbits if the dimension is > 3 (for an example, see Nitecki II],
Palis and deMelo [1 ).

The KS vector fields are dense, but all KS vector fields cannot be structurally stable
since the structurally stable systems are not dense in dimension > 3. To find a subset of
the KS vector fields which are structurally stable, one must put some further restrictions on
the behavior of the a- and co-limit sets of orbits.

For fE X', let

L (f) = {p: p E a(q) for sonic q,. Lj jf) = {p: p eC w(q) for some q).

Du.INITION 3.5. Suppose fE X". A point p E i2 is a wandering point of f if there
are a neighborhood V of p and to > 0 such that if 1tl > to , then Tf(t) V ()V= 0. In the
contrary case, p is a nonwandering point off: The set of nonwandering points off is de-
noted by 24f).

In Definition 3.5, the notation Itl > t o means for all t > to and all t < -t o as long as
the orbit is defined.

We remark that 92(f) D L,(f) U L,(f), but it is easy to construct examples for
which the inclusion is proper (see, for example. Palis and deMelo I II).

DEFINITION 3.6. A vector fE X, is Morse-Smale (MS) if it is KS with a finite num-
ber of critical points and periodic orbits with E2(f) equal to the set of critical points and
periodic orbits.

Some of the basic results on Morse-Smale systems are due to Smale 14], Palls I1 and
Palis and Smale [l 1. They are summarized in the following theorem which is also valid for
vector fields on any compact manifold.

TH:OREM 3.7. (1) The set of MS systems is open and nonemptv in X' for ani' n.

(2) Any f E MS is structurally stable.
(3) The set of'gradient vector fields which are MiS is open and dense in the set of all

gradient vector fields.

Since the MS systems are structurally stable, they cannot be dense in dimension it >3.
On the other hand, one can ask if there are any other structurally stable systems which are
not MS. One way to answer this question is to construct a structurally stable system with
infinitely many periodic orbits.

To see how such a situation might arise, suppose S2 C R3 and J'E Xr(j2) has a hyper-
bolic periodic orbit y. Let WS(y), W"(yI) be the stable and unstable manifolds for y' and let
ir be a Poincare map of some transversal r oty, at 1and W,(y ) W(yt n r, W"(y) = W"(-y) n r:
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that is, that part of the stable and unstable manifolds in the transversal r. Then W,(y),

WN(7) are the local stable and unstable manifolds of the point p as a fixed point of the dif-
feomorphism ir. There is the possibility that W,(-) t- W,"(y) contains points other than the

fixed point p of ir. Any such point q is called homoclinic to p. A point q is called trans-
verse homoclinic to p if W'(-Y) is transversal to W"(-t) at q. If q is transverse homoclinic to
p. then the behavior of the stable and unstable manifold is very bad. In fact, since irW,(-Y)
C W"(y), rW(Y) C W(Y) and q E kl,(3) n Wu"(y), q :A p, we must have iftq E W,(3)

W,"(7) for all n = 0, ± I, ± 2, ... and iflq - p as n - -. If, in addition, q is transverse
homoclinic to p, continuity of the map 7r implies that the picture near p must be something
like the one in Figure 1. The arrows do not represent the direction of a flow as for vector
fields, but only that points move in the direction indicated under iterates of 7r. In Figure I,
we have only indicated some of the complications that are arising from looking at the for-
ward evolution of the unstable manifold. The same type of thing must occur with the

stable manifold. Note that there will be infinitely many transverse intersections in any
neighborhood of the homoclinic point q.

It''( p)

FI(; RI. |.

This phenomenon was observed by Poincard 1 1. Birkhoff I I I proved that every
transverse homoclinic point is the limit of periodic points (that is, points x such that 7T"x = x
for some integer n) and indicated some of the random behavior that occurs near these
points. Smale [1 carried the analysis even further. We briefly describe the results following

Moser 12J. If A is a finite or countably infinite sequence of symbols, let S be the collec-
tion of doubly infinite sequences s = {st, k = 0, - I ... ) with each s, E A. The shift
automorphism a on S is defined by as = {T k , k =0, ± 1, .... , = -Sk I for all k.

Near a honioclinic point q, we can construct a small quadrilateral Q, two of its sides
consisting of parts of WU(p), JIW(p) and the others parallel to the tangents of these sets at
q (see Figure 1). For any point a E Q, let k = k(a) be the smallest positive integer such lhat
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Irk(a) E Q, if it exists. Let D(W) be the set of a E Q for which such a k exists and define
3Fa = 7k( 0) for a E D( i). The map "i is called the transversal map of 7r for the quadrilateral Q.

THEOREM 3.8. If ir is a C--diffeomorphism of the plane with a point q transverse
homoclinic to a hyperbolic fixed point p, then in a neighborhood of q, the transversal map
i of a quadrilateral possesses an invariant set I homeomorphic to the sequence space S with
an infinite number of symbols by a map r: S - I such that 3r = To. Also, there is an in-
teger k, an invariant set 7 of Irk and a homeomorphism ?: S -- I. where S is the sequence

space of a finite number of symbols, such that 7rk' = ro.

Note the difference in the two conclusions in the theorem. In the first part, the set I
is invariant for "i and if is equivalent on I to the shift automorphism on an infinite number
of symbols. In the second part, the set 7" is invariant under a fixed power k of ir itself and
frk is equivalent on 7 to the shift automorphism on a finite number of symbols.

It follows immediately from Theorem 3.8 that there are infinitely many periodic
points in a neighborhood of the transverse homocinic point and they are dense. Also, there
is a random behavior to the orbits on the invariant set I (or 7) since knowing the early

terms of a sequence tells nothing about the later terms of a sequence.
For examples of transverse homoclinic points in celestial mechanics, see Moser [2).

Transverse homoclinic points also occur in structurally stable systems as we shall see below.
More examples in second order nonautonomous differential equations will be given later
when we are studying analytical methods in bifurcation theory. Now, we prefer to continue

the general survey.
To describe further aspects of the theory, it is convenient to work with Diffr(M),

r > 1, the space of diffeomorphisms with derivatives up through order r on a smooth com-

pact manifold M. This can be related to differential equations in several ways. One of the
most important is through a Poincar map for periodic orbits as described above. More gen-
erally, if fE Xn(TI), M C F is compact and, for each x E M, there is a r(x) > 0 such that
Tf(7(x))x G M, Tf (t)x 4 M, 0 < t < r(x), then the map x - Tf(r(x))x is in Diff'(M) if it
has the required number of derivatives.

If g E Diff(M), a point p E M is a periodic point of g if there is a positive integer
n = n(p) such that Tnp = p. The periodic orbit is hyperbolic if no eigenvalue of ag(p)/ax

has modulus one. For each hyperbolic periodic point p of g, one can define the global
stable manifold WS(p) and unstable manifold WU(p) in a manner similar to the definitions
for vector fields.

We now give an example due to Thom which was an inspiration for many further de-
velopments in dynamical systems. In R2 identify the points (x, y), (x + m, y + n) for all
integers m, n. Any unit square with integer vertices may be identified with the torus T 2

and any mapping of the plane into itself yields a mapping of T 2 into T 2 in the obvious way.
Let L be a 2 x 2 matrix with integer coefficients, determinant I and real eigenvalues. The
eigenvaues are then X,, A-1 with X < I irrational. This implies that the linear subspaces
E', E" generated respectively by the eigenvectors for X, X,- have irrational slope. For any
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x E R2 , each of the lines x + E, x + Eu is invariant under L. The map L on R2 generates
a natural map ir on T 2 obtained from the above identification of T2 with unit squares in
R2 with integer coefficients. If p = irx E T2 , x E R2 , let W'(p) = ir(x + Es), WU(p)
ir(x + Eu). If p is a periodic point of ir, then W'(p), WU(p) are respectively the stable and
unstable manifolds of p. Since the slopes of the linear subspaces E2, Eu are irrational, the
sets W'(p) and Wu(p) are dense in T 2 for every p E T2 . Furthermore, it is not difficult to
show that every point of intersection of these sets is a point of transversal intersection. Also,
the points of intersection are dense in T 2 . In particular, there is a dense set of points trans-
verse homoclinic to the critical point p = ir(O). Since each transverse homoclinic point is

the limit of periodic points, it follows that the periodic points of ir are dense in T 2 . A sim-
ple direct proof of this last result is contained in Palis and deMelo [1, p. 171 1.

With 7r: T2 - T2 defined as above, Anosov (1], [2] showed that 7 is structurally

stable. A more elementary proof was given by Moser [I 1, 121. Since ir is structurally stable
and contains infinitely many periodic orbits, this necessarily implies that the Morse-Smale
systems are not dense in the set of structurally stable systems.

The above example was generalized by Anosov (21 in the following wpy.
DEFINITION 3.9. Let M be a compact manifold. An fE Diff'(M), r > 1. is an Am,-

soy diffeomorphism if the tangent space at each point x of M is a direct sum E, G EU x -
variant under the derivative Df; that is, DfXE. = E x), DfXE = E ) and there is a Rie-
mannian metric on M and a constant X E (0, 1) such that JDf~ul < Xlvl, )Dfx-1ul < Xlul for
all x E M, u E E., u E E.

Anosov [2] has shown that these diffeomorphisms are structurally stable. A simpler
proof was given by Moser [I), [21. For a discussion of the restrictions that are imposed on
the manifold M in order for it to admit an Anosov diffeomorphism, see Palis and deMelo I1].

The next important step in the abstract theory of dynamical systems was taken by

Smale [2] by defining systems which satisfy Axiom A. Suppose f E Diffr(M) and A C M
is a closed invariant set. The set A is said to have a hyperbolic structure if the tangent space
at each point x E A is the direct sum E', D E" invariant under Df and there are a Rieman-
nian metric and XE (0, 1) such that lDful < Xlv, IDf,'ul 4 Xluj for x E A, v E J.S

u E E,,. If A is hyperbolic, it is possible to define stable and unstable manifolds for the

set A by looking at asymptotic orbits.
DEFINITION 3.10. f E Diff (M) satisfies Axiom A if the set of nonwandering points

f(f) is hyperbolic and the periodic point , of f are dense in f2(f).
If f satisfies Axiom A, Smale [2] has shown that S2(f) f Q1 U R U ... u 2  where

each S1/is closed invariant and transitive; that is, has a dense orbit. Robinson I I I has shown
that any f E Diffr(M), r > 1, is structurally stable if it satisfies Axiom A and all stable and
unstable manifolds intersect transversally. An f E Diff'(M) is said to be absolutely stable if
there are a neighborhood V(f) C Diffr(M) off and a constant K > 0 such that, for every
g E V(f), there is a homeomorphism h of M such that hf = gh and Ih - 110 < KIf - g1o
where 1"10 designates the norm in Co. Results of Franks (I. Guckenheimer I] and
MaUi [) show that f is absolutely stable if and only if it satisfies Axiom A and all stable
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and unstable manifolds intersect transversally. MaU (unpublished) has also recently shown
that Axiom A is implied by structural stability and a technical condition on the characteris-

tic exponents of Uapunov on S(f).
It is also possible to study structural stability restricted to the set of nonwandering

points. More specifically, fE Diff"(M) is said to be U-stable if there is a neighborhood V(f)
of f such that, for every g E V(f), there is a homeomorphism h: fl(f) - f(g) such that
hf= gh on fl(f). lffsatisfies Axiom A, E(f) = S2 U ... U 12k, then a cycle of S2 is a
sequence p, E Il, .. , p, E ak. = 1k , such that W'(p) r) Wu(pj I ) * 0, 1 < i < s - I.
Smale 12) showed that Axiom A and no cycles imply 12-stable. Palis (21 has shown that
any f satisfying Axiom A is not fl-stable if it has a cycle. It is not known if f fl-stable im-
plies that it must satisfy Axiom A.

LLI



4. Stability and bifurcation at a zero eigenvalue

Suppose A is an n x n constant matrix whose eigenvalues have negative real parts,
x E R, y R" , X0 E Ck(R x R n , R), Y0 e Ck(R x Rn , Rn), k > 1, are functions of
(x, y) E R x Rn which vanish together with their first derivatives at x = 0, y = 0. One of
our objectives in this section is to determine how the stability properties of the solution
x = 0, y O, of the equation

(4.1) x = Xo(x, y), y Ay + Yo(x, y)

depend upon the nonlinear functions X0 , Yo .
For a given neighborhood U of x = 0, y 0, and X E Ck(U, R), Y E Ck(U, R),

k >_ 1, we also discuss how the number of equilibrium solutions of the perturbed equation

(4.2) .x = Xo(x, y) + X(x, y), y = Ay + Yo(x, y) + Y(x, y)

depends upon X, Y in a neighborhood of X = 0, Y = 0. The stability properties of these
solutions will be considered. A complete classification is given for some cases. The neigh-
borhood U will be fixed and our analysis always will be in some other neighborhood V of
x = 0, y = 0 which will be a subset of U.

LMMA 4.1. There are a neighborhood V of(x, y) = (0, 0) and a neighborhood W
of(X. Y) = (0, 0) such that, for (X, Y) E W and any equilibrium point a = Q(X, Y) of'
(4.2) in I, the stable manifold has dimension > n. Furthermore, there is an n-dimensional

manifold Sik, X, Y) in V containing a such that any solution (if (4.2) with initial value in
S(a. X, Y) approaches a as t - - exponentially. Furthermore, S(a, X. Y) is Ck in (X, yI
and the tangent space to S(a, X, Y) at a approaches the space {(0, y), y E Rn ) as (X, Y)

--- (0, 0).

A proot will not be given. It is technical but may be supplied by using the ideas in
Coddington and Levinson II) , Hale 11) or Hartman 121 for the construction of stable mail-
ilblds.

For equation (4.2), a set S C R" + 1 is a local invariant manifold if. for any (x, , v,
C S, there is a T > 0 such that the solution of (4.2) through (x0 , yo) remains in S for
1t1, < T. If T = o, we say S is an invariant manifold. If there is a C' function f(x, , )
defined in a neighborhood of (x, X, Y) = (0, 0, 0) such that i,(0, 0, 0) = 0, a t(0, 0, 0)/3x
= 0 and S = S(X, Y) = {(x, Y): y = u4x, X, Y)} is a local invariant manifold for (4.2).
then we say S is a local center manifold for (4.2).
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Because the matrix A has eigenvalues with negative real parts, it is reasonable to ex-
pect that there is a local center manifold for (4.2). This idea is implicit in tie papers of
Krylov and Bogoliubov written in the 1930's (see Hale jI I for references) and was used ex-
plicitly by V. Pliss [I1 to study stability. Kelley [II, 121 has given a very complete and
readable account of this idea. More precisely, he has shown the existence of a center mani-
fold which is Ck in (x, X, Y) in a sufficiently small neighborhood V(depending on k) of
(x, y) = (0, 0). A center manifold is also exponentially stable in the sense that any solution
which remains in the neighborhood V of (x, y) = (0, 0) approaches the center manifold ex-

ponentially as t - co.
The flow on a center manifold S(X, Y) is given by the scalar equation

xi = u(x, X, Y),
(4.3)

u(x. X Y) = Xo(x. 40x, X, Y)) + X(x, (x, X, Y)).

If a is an equilibrium point of equation (4.2), then a E S(X, Y), a = (xo , V,(xo, X, Y)) for
some xo . The converse is also true. The stability properties of xo as a solution of (4.3) are
easily determined from the behavior of u(x, X, Y) near x = xo . From Lemma 4.1, the
stability properties of x. are reflected in an obvious way in the stability properties of a as
a solution of (4.2). In particular, xo being a stable (asymptotically stable) (unstable) equilib-
rium point of (4.3) is equivalent to a being a stable (asymptotically stable) (unstable) equi-
librium point of (4.2).

From the above discussion, the complete structure of the flow for (4.2) is deter-
mined by knowing the flow for (4.3). Thus, if we can determine a center manifold, the
problem will be solved. Generally, this is extremely difficult to do. We give an alterna-
tive procedure for determining the qualitative properties of the solutions of (4.2) which
is very close to the original method of Liapunov (1]. It uses only the bifurcation func-
tion obtained by an application of the method of Liapunov-Schmidt for the equilibrium
solutions of equation (4.2).

This method has other advantages over the use of the center manifold. The bifurca-
tion function has the same smoothness properties as the original vector field. This is not
true of the local center manifold. It inherits the Ck property for any finite k, but may not
be C- (or analytic even) if the original vector fields are C- (or analytic). For examples,
see Carr 11.

There is a neighborhood of (0, 0) E R x R" and a neighborhood of Y = 0 such that
the equation

(4.4) AO + Yo(x, 0) + Y(x, 0) = 0

has a unique solution O(x, Y) with 00. 0) = 0. This function is Ck in (x, Y). Let

(4.5) G(x, X, Y) = Xo(x, O(x. Y)) + X(x, x, Y)).

We can now prove the following result.
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THEOREM 4.2. There are neighborhoods VI of x = 0, V2 of y = 0, W1 of X = 0,

W2 of Y = 0 and a Ck-function 0: V, x W2 -- V2 such that the equilibrium points (xo, yo)
of (4.2) in Vi x V2 for (X, Y) E W, x W2 are given by

(4.6) G(x o , X, Y) = 0, yo = O(xo, Y)

where G is defined in (4.5). Fur-hermore, the stability properties of the solution x 0 of the

scalar equation

(4.7) x = G(x, X, Y)

are the same as the stability properties of x 0 on a center manifold. Finally, any solution of

(4.2) which remains in the neighborhood V, x V2 for t > 0 approaches an equilibrium

point of (4.2).

The function G(x, X, Y) is easier to compute than the vector field u(x, X, Y) on a

center manifold. The importance of the result is that the function G(x, X, Y), called the

bifurcation function, carries all of the information necessary to determine the stability

properties of the equilibrium points on the center manifold. The conclusion on stability in

Theorem 4.2 is due to deOliveira and Hale [I].

PROOF OF THEOREM 4.2. It is clear that the equilibrium points of (4.2) are given by

(4.6). If u(x, X, Y) is the vector field on a center manifold, then u(x, X, Y) and G(x, X, Y)

have the same set of zeros in a neighborhood of zero. If x 0 is an isolated zero, let us first

prove that G, u have the same sign in a neighborhood of x0 . Without loss in generality, we

can suppose x0 = 0 and it is simple because we can make a small perturbation in X, Y to

attain this property. So, assume G(O, X, Y) = 0 = u(0, X, Y), aG(0, X, Y)/ax > 0,
au(O, X, Y)/ax < 0. Now, consider the functions G(x, X + e, Y), u(x, X + E, Y) for e a

small real number. Then one can show that

G(x, X + e, Y) = G(x, X, Y) + e,

u(x, X + E, Y) = u(x, X, Y) + 8(x, X, Y)f + o(IEJ)

as lel - 0 where 5(x, X, Y) > 0 for x in a neighborhood of zero. The assertion about G

is obvious, but the one about u is nontrivial and uses the properties of a center manifold.

Since the derivatives of G and u with respect to x at (0, 0, 0) have opposite sign, this shows

that a small perturbation of e gives rise to distinct zeros of G, u in a neighborhood of x = 0.

However, this is a contradiction since G, u must always have the same set of zeros. Thus, if

x0 is an isolated zero of G, u, then the functions G, u have the same sign in a neighborhood

of zero. Thus, the stability properties as a solution of (4.7) and (4.3) are the same. If x,

is not isolated, then one can easily discuss all the ways in which this can occur to complete

the discussion of the stability of x 0 .

If a positive orbit stays in V, x V2, then its w-limit set must be on the center mani-

fold and it must be a connected invariant set. Also, Lemma 4.1 implies that each equilib-

rium point has a stable manifold of codimension one transverse to the center manifold. If



16 JACK K. HALE

the w-Iimit set contains two distinct points, then it must contain the arc between these
two points on the center manifold. If there are no equilibrium points between these two,
then the positive orbit must remain between the transverse stable manifolds above and go

back and forth along the arc as t -- -, an obvious contradiction. The same type of
argument can be used even if there are any number of points in the arc. The theorem
is proved.

The proof of the last statement in the theorem can be modified following Hale and
Massatt [I] to obtain the following result.

THEOREM 4.3. The w-limit set of a bounded orbit of the gradient system i = f(x),
f(x) = grad F(x) is a single point if. for every zero x 0 off which belongs to a continuum
of zeros of f, the matrix 3f(x0 )/ax is either nonsingular or has zero as a simple eigenvalue.

PROOF. We only indicate a proof. Details may be found in Hale and Massatt [I].

Differentiating F(x) along the solutions one sees that the w-limit set of every solution must
belong to the set of equilibrium points. Since the .-Iimit set is connected, it must contain
either a single equilibrium point or a continuum of such points. If x0 belongs to a contin-
uum of the wo-imit set, then the hypothesis on af(x0 )/ax implies the existence of a smooth
center manifold through x. of dimension one. Thus, the w-limit set near x0 is a smooth
arc. Since it is compact, it must be an arc or a closed curve. But then one can use a gen-
eralization of Lemma 4.1 to show there is a tubular neighborhood of the Wo-limit set such
that any orbit which remains in this neighborhood for all t > 0 lies on a stable manifold
for an equilibrium point. This proves the result.

As a consequence of Theorem 4.2, we have

COROLLARY 4.4. An equilibrium solution (x,, yo) E V, x V2 of (4.2) for
(X, Y) E Wi X W2 is asymptotically stable if and only if there is an e > 0 such that

G(x o + u, X, Y)u < 0 for 0 < Jul < e. It is unstable if and only if there is an e > 0 such
that G(x o + u, X, Y)u>Oforeither0 <u <eor-e <u <0. If there is an E > 0 such
that G(x o + u, X, Y) = 0 for 0 < Jul < e, then the solution is stable and there is a Ck first
integral in a neighborhood of (xo, yo). If the functions X0 , X, Yo, Y are analytic (or C-)
then this first integral is analytic (or C-).

PROOF. Everything is obvious except the existence of the first integral. Lemma 4.1
implies the existence of an n-dimensional Ck -stable manifold above each equilibrium point
x0 + u, Jul < e. These manifolds are analytic if the functions in (4.2) are analytic. Using
these stable manifolds, one can make a C4 (or analytic) change of variables (x, y) -- (v, w)
so that equation (4.2) in a neighborhood of (xo , yo) becomes 6i = 0, vi = Aw + W(o, w).
This equation has a first integral V(o, w) = v. Thus, the original equation has a first integral
and the proof is complete.

COROLLARY 4.5. Suppose G(x o, X, Y) = 0 and yo = O(xo Y), 0 satisfying (4.4).
If there is an integer q > I and a i 0 0 such that

(4.8) G(x o + u, X, Y) = aluq + o(lulq ) as Jul - 0,

.... -.......... I.I.....l



DYNAMIC BIFURCATION THEORY 17

then the solution (xo, yo) of (4.2) is asymptotically stable if and only if f < 0, q odd.

Otherwise, it is unstable.

We have also the following results of Liapunov [I] (see, also, Bibikov I I).

COROLLARY 4.6. Suppose G(xo , X, Y) = 0, yo = (xo, Y), 0 satisfying (4.4) and
X0 , X, Yo, Y are analytic. Then either there are an integer q > 1 and a ( * 0 such that
(4.8) is satisfied with the stability properties as stated in Corollary 4.5 or (x o, yo) is a stable
solution of (4.2) and there is an analytic first integral

PROOF. Since G(x, X, Y) is analytic, only the two cases mentioned can occur,

COROLLARY 4.7. If there is a scalar function H(x, y, z) continuous for (x, y, z) E
R x R" x R" such that H(x, y, 0) = 0 and

Xo(x, y) + X(x, y) = H(x, y, Ay + Yo(x, y) + Y(x, y))

then the zero solution of (4.2) is stable and there is a first integral.

PROOF. The hypothesis implies G(x, X, Y) = 0 for x in a neighborh6od of X = 0.
Let us now turn to the problem of bifurcation of the equilibrium point (0, 0) treating

X, Y in (4.2) as parameters. An equilibrium point (xo, yo) of (4.2) is called a saddle-node
if x0 as a solution of (4.7) or (4.3) is asymptotically stable from one side and unstable from
the other. The following result is contained in Andronov et al. [I], Sotomayor I1].

THEOREM 4.8. Suppose k > 2 and there is a * #' 0 such that

(4.9) G(x, 0, 0) = #X2 + o(Ix12) as lx - 0.

Then there is a neighborhood V of (x, y) = (0, 0), a neighborhood W of (X, Y) = 0 and a
Ck-function y: W - R such that the following conclusions hold:

(i) 7(X, Y) > 0 implies there are no equilibrium points of (4.2) in V
(9i) (X, Y) = 0 implies there is one equilibrium point of (4.2) in V which is a saddle-

node.
(i) -(X, Y) < 0 implies there are two equilibrium points of (4.2) in V, one is a hy-

perbolic saddle and the other is hyperbolic and asymptotically stable.

Furthermore, the set P = {(X, Y): y(X, Y) = 01 is a submanifold of codimension I
in W (see Figure 2).

iROOF. The function G(x, X, Y) satisfies aG(0, 0, 0)/ax = 0, a2 G(O, 0, 0)/ax 2 
-

23 * 0. Thus, there are a neighborhood W of (X, Y) = (0, 0) and a neighborhood V, of
x = 0 such that the equation aG(x, X, Y)/ax = 0 has a unique solution x*(X, Y) with
x*(0, 0) = 0. If y(X, Y) = (sgn O)G(x*(X, Y), X, Y), then the conclusion of the first part
of the theorem follows from Theorem 4.2.

To prove the last part of the theorem, consider the special case where X(x. y) =X,

Y(x, y) = 0 for all x, y where X is a real scalar and show that D.-r(X, 0) * 0 for X 0.
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FIGURE 2. FIGURE 3.

G(x, 0, 0) = Ax + o(1x12). G(x, 0, 0) = #X
3 + o(1X13).

To discuss a higher order bifurcation, suppose that k >' 3 and

(4.10) G(X, 0, 0) = tpX3 + o(1X13 ) as 1xi - 0, 03 * 0.

The argument below follows Chow, Wae and Mallet-PNret [1I] and Vanderbauwhede [I.
Then there are a neighborhood V, of x = 0 and a neighborhood W of (X, Y) = (0, 0) such

that the equation 32 G(x. X, y)/iiX2 = 0 has a unique solution x,*(X, Y) with 4,(0. 0) = 0.
Let

-Y, M Y)ax

If we apply the same argument as in the proof of Theorem 4.8, then for (X, Y) E W, the
equation 3G(x, X, Y)/ax has no solution in V1 if t3-y 1 XM Y) > 0, one solution if -fl(X, Y)

=0 and two simple solutions if Oy3I (X, Y) <0.
If 0lyi (, Y) > 0, then G(x, X, Y) is strictly increasing and has exactly one solution

in V, * If Yj (X, Y) = 0, let x2(X, Y) be the unique solution of aG(x, X, Y)Iax = 0 in V,
and define

(4.12) 'y2(X. Y) =G(X2(X Y), X. Y).

If -t, (X, Y) =0, -y2(X, Y) = 0. then the unique solution of G(x, X, Y) =0 in V, is a tri-
ple zero. If either Oy(X Y) > 0 or y,(X, Y) =0, y12 (X Y) * 0, then this unique solution
is simple.

Now suppose 0 1 (X, Y) < 0. Then there are two simple solutions of aG(x, X, Y)/3x

=0 in V,. Again using the argument of the proof of Theorem 4.8. one can show that they
have the form

X4*= X(X, Y) + 0(XY Y 1(X' Y))(-O371 (X "1)'/2

where ua*(X, Y, 0) 3 '312 (see Vanderbauwhedc III for details).
If

(4.13) y7(X, Y) = G(x:*(x. Y), X, Y)G,(x.*(X Y), X. Y)

then, using Theorem 4.2, we can state the following theorem.
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THEOREM 4.9. Suppose G(x, 0, 0) satisfies (4.10), the regions VI, W and functions

tI, i on W are defined as above. Then the following conclusions hold:
(i) If either 0y I(X, Y) > 0 or0- I(X, Y) < 0 and )-(X, Y) > 0, then equation (4.6)

has one zero in V and equation (4.2) has exactly one equilibrium point in a neighborhood

of zero which is asymptotically stable if / < 0 and unstable if j3 > 0.

(ii) If 3fI(X, Y) < 0 and t(X, Y) = 0, then equation (4.6) has two zeros and equa-
tion (4.2) has two equilibrium points in a neighborhood of zero, one being a saddle-node

and the other hyperbolic. The hyperbolic one is asymptotically stable if / < 0 and a saddle

point of order one if 0 > 0.

(iii) If 0t,(X, Y) < 0 and -y(X, Y) < 0, there are three simple solutions of equation

(4.6) and equation (4.2) has three equilibrium points in a neighborhood of zero, all hyper-
bolic, two saddles of order one if 0 > 0 and one saddle of order one if 0 < 0, the others

being asymptotically stable.

In the above theorem, the set P = J(X, Y): h-t(X, Y) < 0, -(X, Y) = O is the bi-
furcation set in W; that is, the set where the number of equilibrium points of (4.2) changes

from one to three and where the topological structure of the trajectories of (4.2) changes in

a neighborhood of zero.

It is possible to show that there are positive nonzero functions o, a_ on W such that

saying that (X, Y) E F implies either

7 2 (X, Y)= a+(X, Y)(-/3"y(X, Y)) 3 /2

or

'Y2 (X, Y) =-oX, Y)(-/y,(X, y)) 3/2

where 72 is defined in (4.12). This shows that the set r is like a cusp surface in W as in

Figure 3 (see Vanderbauwhede Ill for details).

With G satisfying (4.9), Theorem 4.8 implies the complete behavior of the solutions

of (4.2) in a neighborhood of zero is characterized by one function of X, Y. If G satisfies
(4.10), then two functions were needed to obtain this characterization. If the degeneracy of

G(x, X, Y) at (X, Y) (0, 0) is higher order, then it becomes extremely difficult to give an

explicit description of how the structure of the zeros depends on X, Y. This is due to the

fact that it is always difficult to discuss the zeros of polynomials of degree greater than three.

Singularity theory can be used to say that the problem actually is reducible to the dis-

cussion of a polynomial. If we suppose all functions in (4.2) are C-, then G(x, X, Y) is

C- in x, X, Y. If

(4.14) G(x, 0, 0)=/3x q + o(lxl q +I) as Ix-0, /3 0,

then the Banach space version of the Malgrange Preparation Theorem due to Michor [I I im-

plies there are a polynomial P(x, X, Y), P(x, 0, 0) = /X
q of degree q in x, and a positive

function E(x, X, Y), E(x, 0. 0) = 1, such that

(4.15) G(x, X, Y) = .(x, X, Y)P(x, X, Y)
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and these functions are C- in x, X, Y. Thus the zeros of G(x, X, Y) as well as the signs
between zeros coincide with those of P(x, X, Y). Thus, we can state an analogue of Theo-
rem 4.2 in the following way. The equilibrium points of (4.2) are given by

(4.16) P(xo, X, Y) = 0, y = 0(x0 , Y)

and the stability properties of the equilibrium points are determined by the stability proper-
ties of the equilibrium point x0 of the scalar equation

(4.17) x = P(x,X X, Y).

Such a result could not be obtained by reducing the discussion of (4.2) to the center
manifold (4.3) and then applying the Malgrange theorem. The reason is that the center

manifold is not necessarily C- (see Carr [1]).
For the special case q = 2, one can take P(x, X, Y) = OX

2 + y(X, Y) where -' is the
function in Theorem 4.9. For q = 3, one can take P(x, X, Y) = px

3 + y1J(X, Y)x +

7t3 (X, Y) where 73 is essentially the same function as 72 in (4.12).
In the applications, one frequently encounters the situation where the perturbed vec-

tor field (X, Y) is not an arbitrary function in a neighborhood of zero, but belongs to a
prescribed k parameter family of vector fields X(x, y, X), Y(x, y, X), X E Rk, which vanish
for X = 0. The bifurcation function is then a function of X, G = G(x, X). The number of
equilibrium points and their stability properties are determined by the manner in which the
k parameter family of vector fields crosses the bifurcation surfaces obtained from taking

arbitrary perturbations X, Y. Of course, it is clear that the same conclusions will prevail if
the original problem is phrased in terms of the restricted family depending on A. This latter
method is often more transparent.

As a final remark, it is possible to extend everything above to the case where the
eigenvalues of A in equation (4.1) have nonzero real parts.



S. Stability and bifurcation from a focus

In this section, we discuss bifurcation from an equilibrium point in the spirit of the
previous section except under the hypothesis that the linear approximation of the vector
field has two purely imaginary roots and the remaining ones have negative real parts.

The unperturbed equation is given as

(5.1) x= Bx + Xo(x, y), . Ay + Yo(, y)

where

A is an n x n matrix whose eigenvalues have negative real parts, X0 E Ck(R 2 - Rn , R2 ),

yo E Ck(R 2 x Rn, Rn), k > 1, are functions vanishing together with their first derivatives

at x= 0. y 0.
For a given neighborhood U of x = 0, y = 0 and X E Ck(U, R2 ), Y E Ck(U, Rn),

the perturbed equation is

(5.2) i = Bx + Xo(x, y) + X(x, .), y = Ay + Y0(x, y) + Y(x, y).

For (X, Y) in a sufficiently small neighborhood of (0, 0), equation (5.2) has a unique

equilibrium point x = ot(X. Y). y = P(X, Y) in a neighborhood of x = 0, y = 0, a(0, 0) = 0,

0(0, 0) = 0. The functions a, 1 are Ck.functions of X, Y. By a translation of variables, we
can therefore assume that this equilibrium point is zero. Thus, we will assume without loss

of generality that

(5.3) X(0, 0) = O, Y(0, O) = 0.

Our objective is to study how the stability properties of the unperturbed equation
(5.1) are determined by the nonlinearities X0 , Y0 . Also, we determine the number and

stability properties of the periodic orbits that can bifurcate from zero as the perturbation
terms X, Y are varied in a neighborhood of zero. The existence and the number of periodic

solutions follow from the bifurcation function obtained by an application of the method of

Liapunov-Schmidt. We prove that this bifurcation function also carries the information on
the stability of periodic orbits. The proof of this latter fact uses the center manifold

theorem.
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LEMMA 5.1. There are a neighborhood V of (x, y) = (0. 0) and a neighborhood

W of (X. Y) = (0, 0) such that, for (X, Y) E W and any periodic orbit -Y = y(X. Y) of

(5.2) in V, the stable manifold has dimension > n + 1. Furthermore, there is an (n + I)-
dimensional manifold S(-I, X, Y) (either a generalized Mobius band or the cross-product
of a circle and an n-dimensional ball) containing -y such that y is exponentially asymptot-
ically orbitally stable with asymptotic phase relative to initial values in S(y,, X, Y). Fur-

thermore, S(-t, X, Y) is Ck in X, Y and is diffeomorphic to the local stable manifold

for any periodic orbit of the linear equation i = Bx, ., = Ay.

The proof of this result may be supplied by using the ideas for the construction of
stable manifolds near periodic orbits in Coddington and Levinson jI , Hale I1I (see. also,
Fenichel [11).

The manifold S(,y, X, Y) in Lemma 5.1 has codimension one. Thus, the complete be-
havior of the solutions near a periodic orbit is determined by what happens in one other

direction. An analysis of the Poincar6 map on a center manifold will take care of this direc-
tion.

There is a center manifold for equaiton (5.2) which is Ck in (x, X, Y) in a sufficiently
small neighborhood V of (x, y) = (0, 0) and a neighborhood W of (X, Y) = (0, 0). If a
center manifold is given by S = {(x, y): y = (x, X. Y)} then the flow on the center mani-

fold S is given by

xi = Bx + (x),(5.4)
((x) = X0 (x, ,i(x. x, Y)) + X(x, k(x, x, Y)).

If y is a periodic orbit of (5.2), then -y belongs to S and conversely. Thus. the periodic

orbits of (5.2) can be determined by discussing the periodic orbits of (5.4). Also. from
Lemma 5.1, the stability properties of a periodic orbit of (5.2) are completely determined
by the stability properties of the corresponding periodic orbit of (5.4).

By the manner in which a center manifold is constructed, one can also obtain a priori

bounds on 4'. In fact, for any e > 0, 6 > 0, there is a constant K = K(e, 6) such that, if

y = 4,(x, X, Y) is a center manifold of (5.2) for Jxi < c, (X, Y) in a 6-neighborhood of

zero, then

(5.5) 140(, X, Y)l < Klx1.

Also, K(e, 6) - 0 as (e, 6) - (0, 0). Thus, in a neighborhood of (x, y) = 0, (X, Y) = 0,
every periodic orbit of (5.2) must have the y coordinate satisfying (5.5). For x = (x . x 2 ),
this justifies the transformation of variables

(5.6) x, = u cos O, x 2 = -u sin O, y=uv

in (5.2). The new equations for (0. u, u) are
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=- (e sin 0 + )72 cos 0)/u d-f I + 00, u, u, X, Y),

(5.7) i = .V! cos 0 - k 2 sin 0,

= Au + klu - (11 cos 0 - 1 2 sin o)v/u

where .= (.1, 5V,), 5V = x,' + x, Y = + Y and all functions are evaluated at (u cos 0.

-u sin 0, uO).
Since the function 0 satisfies 0(0, 0, v, 0, 0) = 0, it follows that 0 > 'A for v in a

fixed compact set and (u, X, Y) in a sufficiently small neighborhood of (0, 0, 0). Thus. we

may replace t by 0 to obtain

(5.8) duldO = f(6, u, u, X. Y), du1 dO = Av + g(O. u, u, X, Y).

The functions f, g are 21-periodic in 0 and

(5.9) .f(O, O. U, X, Y) = O, af(O, O, V, O, O)/au -- O. g(O, O, V, O, O) = O.

Any 21-periodic solution of equation (5.8) corresponds to a periodic orbit of (5.2)

through the transformation (5.6) and conversely.

For equation (5.8), there is the standard procedure of alternative problems or Liapunov-

Schmidt for determining the 2w-periodic solutions for (u, X, Y) in a neighborhood of zero

and u in a compact set (see Cesari I!1 for a general discussion of the alternative method as

well as references). To describe the method, let P2 1 = {w: R -- R" + 1, 2-periodic, con-

tinuous) with the supremum topology and, for e > 0, let Me) be the e-neighborhood of

(X, Y) = 0. For a E R fixed, consider the equation, for (u. v) E P2,,
1 2W

u(s)d = a,

(5.10) = f(, u, u, X, Y) - 1 2 ,f(s. u(s), u(s), X, Y)ds.

dv = Bu + g(0, u, v, X, Y).

An application of the Implicit Function Theorem shows there are an a > 0 and a

unique Ck -function (u(', a, X, Y), v(', a, X, Y)) E P2 ,r for lal < C, (X, Y) E W(E), vanishing

for (a, X, Y) = (0. 0, 0) and satisfying (5.10). If we define

(51) G(a, X, Y) = -L fo /{s, u(s, a, X, Y), u(s, a, X. Y), X, Y) ds

then the above 21-periodic function will satisfy (5.8) if and only if

(5.12) G(a, X, Y) = 0.

It is also easy to show that every 21r-periodic solution of (5.8) for (u, X, Y) in a neighbor-

hood of zero and u in a compact set can be obtained through this process.
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The function G(a, A, Y) is called the bifurcation function and equation (5.12) is called
the bifurcation equation.

We can now prove the following result. The conclusions on stability are due to deOli-
veira and Hale [I I.

THEOREM 5.2. There are a neighborhood U of zen in P2 ", an f > 0 and Ck-functions

u: R x V(f) x W(e) - R,

u: R x V(e) x W(e) - R",

G: V(e) x W(e) - R,

V(e) = (-e, e), W(e) the e-neihborhood of (X Y) = (0, 0), (u(', a, X, Y), v(. a, X, I'))

E P., such that equation (5.8) has a 27r-periodic solution (u(0), v(O)) in U if and onlY if
(u(O), $4O)) = (u(O, a, X, Y), v(O, a, X, Y)) and a satisfies (5.12). Furthermore, the stability
properties of a 2n-periodic solution u(O. a., X, Y), v(O, ao. X. Y) coincide with the stability
properties of ao as a solution of the scalar equation

(5.13) a = G(a, X, Y).

In particular, u(0, a, X, Y), v(O, a, X, Y) is stahle (asymptotically stable) (unstable) if and
only if ao is stable (asymptotically stable) (unstable).

PAoo. We only outline the proof of stability. The details can be found in deOliveira
and Hale 11] or Hale 12]. The theorem is first proved for the variable v absent; that is, a
scalar equation

(5.14) duldO = f(0. u, X, Y).

Let i'(0, a, X, Y), GE(a, X, Y) be the 2nT-periodic function and bifurcation function construc-
ted for this equation by the alternative method. Then 3i(0, a, X, Y)/aa = I at a = 0.
(X, Y) = (0, 0) and one can make the transformation of variables u - b. u(0, b. X. Y)

to obtain

[ai(0, b, X, Y)l-
6 = I ab I G(b, X, Y).

Since 8i [3b > 0 if b, X are small, one obtains the result for v absent. When v is present.
there is a center manifold with the flow on the center manifold given by an equation of the
form (5.14). One now has two bifurcation functions (a, X, Y) and G(a, X, Y) correspond-
ing respectively to (5.14) and (5.8). These functions must have the same zeros and one can
use an argument similar to the one in the proof of Theorem 4.2.

Theorem 5.2 has obvious interpretations about the existence and stability of periodic
orbits of (5.2). Using the same type of argument that was used in the proof of Theorem 4.2,
one can also show that the c-|imit set of an orbit in a neighborhood of zero consists of
either zero or a single periodic orbit. These results are summarized in
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THEOREM 5.3. Let u(O, a, X, Y), u(0, a, X, Y) be the 2n-periodic functions satis-

fying (5.10) and let G(a, X, Y) be defined in (5.11). Then there are a neighborhood V of

(x, y) = (0, 0) and a neighborhood W of (X, Y) = (0, 0) such that equation (5.2) for (X, Y)

in W has a periodic solution (x(t), y(t)) in V if and only if

x(t) = (u(O(t), ao, X, Y) cos 0(t), -u(O(t), ao, X, Y) sin 0(t)),

y(t) = u(O(t), a., X Y)u(O(t), a., X, Y)

where G(a o. X, Y) = 0, 6(t) = I + E(0, ao, X, Y), u(0, ao, X, Y)) and 0(0), ao are uniquely

determined by x(O), y(O). The stability properties of the periodic orbit coincide with the

stability properties of ao as a solution of (5.13). Finally, the c-limit set of an orbit of
(5.2) in V is a single periodic orbit.

One can show (see, for example, Chafee [1)) that

(5.15) G(a, X, Y) = -G(-a, X, Y).

Thus, if a is a solution of G(a, X, Y) = 0, then so is -a. One shows that these two solu-

tions will correspond to the same periodic orbit of (5.2). Thus, we only need to be con-

cerned with positive roots of G(a. X, Y) = 0.

Using this fact, Theorem 5.2 and the ideas of the proof of Corollary 4.4, one obtains

the following interesting consequence for the stability of the zero solution of the unper-

turbed equation (5.1).

COROLLARY 5.4. The zero solution of(5.1) is asymptotically stable (unstable) if and

only if there is an e > 0 such that aG(a, 0, 0) < 0 (> 0).for 0 < lal < e. There is an e > 0

such that G(a, 0, 0) = 0 for Jal < e if and only if the zero solution is stable and there is a

first integral in a neighborhood of zero.

This corollary was first proved by Liapunov 111 (see also Bibikov I11) for the case
when X0 , Yo are analytic. In particular, Corollary 5.4 implies that, if

(5.16) G(a, 0, 0) = poal q + 1 4 o(lal2q + 1) as lal - 0, po * 0,

then the zero solution of (5.1) is asymptotically stable if 30 < 0 and unstable if 30 > 0. By

using the theory of normal forms for equation (5.1) (see, for example, Bibikov IlI or

Takens II) one can relate the sign of 0o to the stability of equation (5.1) under certain
types of high order perturbation (for details, see Negrini and Salvadori I , Bernfeld and

Salvadori (11).
For k > 2q + 1, we now discuss equation (5.2) with G(a, 0, 0) satisfying (5.16). There

are functions ct: W - R, a(0, 0) = 0, 0 <j < q - I, aq(O, 0) = 30 such that

(5.17) G(a, X, Y) - a(X, Y)a 2i +  + o(al2q + I)
t=o
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as lal - . Let

ro = {(X, Y):%a(X, Y)=0}, 111 f(X, Y): 0o(X, Y)>0,
(5.18)

-= {(X, Y): a(x, Y) < 0}.

All of the coefficients ai(X, Y) can be computed in terms of tile derivatives of X. Y of or-

der < 2j + I. For the matrix of the linear approximation of (5.2) at zero, the functij'i

ao(X, Y) represents the real parts of the eigenvalues which are purely imaginary Ior (M, Y)

= (0, 0). Thus, in order to have a periodic orbit bifurcate from zero by a variation in

(., R) near some point (.,. Y), the point (, i) must have ao(k, R) = 0; that is (X, R)

belongs to U0 .
For some special types of one parameter families of vector fields, the bifurcation at

(Xo, Yo) is very simple as shown in the following result. essentially due to Negrini and al-

vadore [1].

THEOREM 5.5. Suppose G(a, 0, 0) satisfies (5.16), (X(P), Y(p)). p e R, is a CI-family
def

of vector fields, vanishing at p = 0, and suppose the functions ai(X(P). Y(p)) = ai(p) are

defined in (5.17). If a(0) 0 0, then there are a neighborhood V of Cx, .) = (0, 0) and a

Po > 0 such that, if 0 < IpI < po, then equation (4.2) has a periodic orbit in V if and onh,

if oto(O) o < 0. When this condition is satisfied the orbit is unique. It is asymptotically

stable if go < 0 and unstable if 00 > 0.

PROOF. The bifurcation function G(a. X(p), Y(p)) G(a. j) satisfies

G(a, u)= cs()a 2'+ + o(jaj2 
+l) a; lal - 0

j=0

where ai(O) = 0, 0 </ < q, aq(O) = 00 * 0. It is not difficult to show that there is a neigh-

borhood U of (a, p) = (0, 0) such that any solution of G(a, p) = 0 in U has the a priori

bound lal < kjltal12q . If we let a = lA1jtI
2 qb, then

I(G(111'2qb, u) = F(b, P ) = Y y/(p)b2
i+I + o(lpI)

I/=o

as 1jI -0, where y 0 (0) = ao(O), -v,(O) = 0, 0 </ <q, 'yq(0) = Oo * 0. The Implicit

Function Theorem implies the result stated in the theorem on existence. The stability fol-

lows from Theorem 5.2.

Theorem 5.5 says that nothing very complicated can occur from variations in a one

parameter family of vector fields regardless of the degeneracy in G(a. 0, 0) provided that the

eigenvalues cross the imaginary axis with a definite speed; that is, o 0 (p) = &'(O)P + o(l)

as - O, c%(O) * 0. It is only possible to obtain one periodic orbit and the amplitude of

the orbit (from the proof) is of order p1I' 12'1 as IJI -- 0.
Theorem 5.5 does not imply that there is at most one periodic orbit of (5.2) for every

(X, Y) in a neighborhood of (0, G). Ii fact, if q > I. we will see later that there will always
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be some (X, Y) in any neighborhood of zero such that there are q periodic orbits. Assum-
ing one parameter families of perturbations in (5.2), Flockerzi III has used Newton's poly-
gon to determine the number of solutions of G(a, p) = 0 and their stability when ao(P) =
%pjk + o(llk) as lI - 0. We obtain results for arbitrary perturbations (X. Y) which are
more in the spirit of Chafee [1].

The first result for q = I is referred to as the generic Hopf Bifurcation Theorem.

THEOREM 5.6. Suppose

G(a, 0, 0) = 0 0a
3 + o(Ja13 ) as jai - 0, 00 * 0,

and ao(X, Y) is defined in (5.17). Then there are neighborhoods W of (X, Y) = (0, 0), V
of(x, y) = (0, 0) such that for (X, Y) in W, equation (5.2) has a periodic orbit in V if and
only if ao(X, Y)Oo < 0. When this condition is satisfied, the orbit is unique and is asVmp-
totically stable (unstable) if and only if 00 < 0 (> 0).

PROOF. In a neighborhood of zero, G(x, X, Y) = 0 either has one positive root or
no positive root. The condition for the existence of one is ao(X, Y)3 o < 0. The stability
of the orbit follows from Theorem 5.2.

With the notation as in (5.18), if (X Y) E F+(X, Y), then a periodic orbit can exist

for (X, Y) in r+(x, Y) if and only if go < 0 and then it is asymptotically stable (the super-
critical case) with the origin being unstable. It can exist for (X, Y) E r- if and only if

00 > 0 and then it is unstable (the subcritical case) with the origin being stable.
Suppose there is a one parameter family of perturbations X(X), Y(N), X C R, which

vanish for X = 0 and this curve of perturbations has (X(X), Y(X)) in F- for -e < X < 0 and
in F for 0 < X < e. Then the origin is asymptotically stable for X < 0 and unstable for
X > 0. There are an unstable periodic orbit and subcritical bifurcation at X = 0 if 00 > 0
and an asymptotically stable periodic orbit and supercritical bifurcation at X 0 if 00 < 0.
Notice that it is not required that the curve cross P0 transversally; that is. the eigenvalues of
the linear part of (5.2) cross the imaginary axis with a definite speed. Contrast this with

Theorem 5.5.
If the first, second and third derivatives of G(a, 0, 0) vanish at a = 0, Theorem 5.6

cannot be used. The discussion of the case of higher order degeneracy of G(a, 0, 0) is much
more complicated and one is forced to use the Malgrange Preparation Theorem on G(a, X. Y)
for the general case as we did in §4. There are some more specific results presented below

that can be obtained without this theorem; namely the case q = 2 in (5.16).
Suppose q = 2 in (5.16) and define ro, r , F- by (5.18). If ao(X, Y)3o < 0. then

ao(X, Y)o 3(X, Y) < 0 for (X, Y) in a neighborhood of zero and G(a, X, Y) has exactly
one positive zero. Thus, equation (5.2) has exactly one periodic orbit. If o0 (X, Y3, > 0.

there may be more than one positive zero of G(a, X, Y). To determine conditions for when
there are more than one, define PAr, X, Y), r > 0. by the relation

(5.19) G(a, X, Y) = aP(a 2, X, Y).
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Extend P(r, X, Y) as an even function for r E R. Then the positive zeros of G are deter-

mined from the positive zeros of P(r, X, Y). Since go * 0, the Implicit Function Theorem
implies there are neighborhoods V of r = 0, W of (X, Y) = 0 and a unique function 6:

W -- R+ such that 6(0, 0) = 0 and aP(6(X, Y), X, Y)/ar = 0. Let

(5.20) (X, Y)= P((X, Y), X, Y).

If y(X, Y)0o < 0, there are two positive simple zeros of P(r, X, Y) and thus two periodic
orbits of equation (5.2). The orbit corresponding to the smaller zero is unstable (asymptot-

ically stable) if 0o < 0 (> 0) and the other is asymptotically stable (unstable). If 7,(X, Y)3o
= 0, 6(X, Y) > 0, then there is a unique periodic orbit which on a center manifold is stable

on one side and unstable on the other. If y(X, Y)3o > 0, there is no positive zero of

P(r, X Y) and, thus, no periodic orbit of (5.2). These results are summarized in

THEOREM 5.7. Suppose

G(a, 0, 0) = 3a s + o(al') as 1al-) O, 00 * 0,

ao(X, Y) is defined in (5.17) and -y(X, Y) is defined by (5.20) when ao(X Y)3o > 0. Then
there are neighborhoods W of (X, Y) = (0, 0), V of (x, y) = (0, 0) such that, for (X, Y) E W,
equation (5.2) satisfies the following properties in V:

(i) ao(X, Y)3o < 0 implies a unique periodic orbit which is asymptotically stable
(unstable) if 30 < 0 (> 0).

(ii) ao(X, Y)0o > 0, -y(X, Y)3o < 0 implies there are two periodic orbits, the one
corresponding to the smaller value of a is unstable (asymptotically stable) with the other
one being asymptotically stable (unstable) if 30 < 0 (> 0).

(iii) ao(X, Y)3o < 0, -y(X, Y) = 0, 6(X, Y) > 0 implies there is a unique periodic
orbit which on a center manifold is stable on one side and unstable on the other.

(iv) Qo(X, Y)Po > 0, -AX, Y)3o > 0 implies no periodic orbit.

If we let 1: = f(X, Y): 6(X, Y) = 0), 1 has codimension I and is tangent to F at
(0, 0). Define 10 as in (5.18). Then Theorem 5.7 states that the bifurcation set for equa-
tion (5.2) for q = 2 in (5.16) is given by I"o U Y. The neighborhood W is divided into the

components shown in Figure 4 with the number of periodic orbits indicated. The set P4 is

drawn to the right of pO and the intersection of i , Y contains the point (X, Y) = (0, 0).

0 r0

0 11 0

FiuFtE 4a. 30 < 0. Fi(;uR[ 4b. 00 > 0.
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From these pictures, one can see clearly the meaning of Theorem 5.7 for q 2. Any

curve of perturbations (X(p), Y(M)) crossing p0 transversally, that is, P'(0) : 0, can never

enter the region containing two orbits. If the curve is not transversal to 1.° , it is possible

for it to enter this region. As remarked earlier, this type of problem with one parameter

problems was discussed by Flockerzi Il I-

There remains the problem of computing the number 00 in (5.16) and the functions

ai(X, Y) in (5.17). One method is to approximate the Taylor series in a for the functions

u(a, X, Y), v(a, X, Y), G(a, X, Y) directly from the defining equations (5.10), (5.11 ). An

alternative procedure is to transform the vector field (5.2) by a change of coordinates to a

convenient normal form. The method of Lie transforms developed originally for applica-

tions to celestial mechanics is very convenient for obtaining this normal form. The best tel-

erence is lienrard [II. This method also is presented in the fortlcoming book of ('how and

Hale 11 . It leads naturally to implementation on the computer (see Meyer and Schmidt I I

and could lead to considerable improvement over the present methods used for the comrputa-

tion of periodic orbits.

Using the same ideas, the appropriate extensions of tile results to the case where A

has eigenvalues with notizero real parts are only a technicalit,.

lit tile applications, it often happens that the perturbed vector field depends ItI a spe-

cial way on a finite number of parameters varying in a neightthood of /co. The bhirca-

tion diagrams in the parameter space are then obtained by stlidying the way I IIhich tile

family of vector fields crosses the general bifurcation curves given above. For e:itnple, if

there is a single parameter pi and the lowest order tertms ilt tlie hitttcatior t|utctioll ire

Oa-3 + -yX with 0 * 0, -y * 0, then this is the case of generic Hiopf bifuicatiott, alld tile de-

pendence on X through the linear term ,yX implies there is onlk one crossing of the biLurca-

tion curve as we noted before. When there are several paiatnetets itt the gectric Ilopf hifrir-

cation problem, then the family of vector fields can cross sevetal times and iII a vet\ cotn-

plicated manner. The case where the degeneracy in a is ol order S utq 2 itt (5.10)) is evell

more difficult. Also, it is often the case that one parameter. say P. plas a distitnguished

role (sometimes called a modal parameter) and one is inercsted in sttd\ ing the biftircatiots

when this parameter is fixed and the other paraiters are raried. This queslionl has heell

discussed in detail for third order and fifth order degeneracy by Goluhbitsky and Langfotd I I



6. First order bifurcation in the plane

Suppose f C R2 is open and let X" = X'( I) be the set of CL(n, R2 ) vector fields.
r > 1, which are transverse to the boundary of 12. The set Z' of structurally stable vector
fields in X' is characterized in Theorem 3.2 and I" is open and dense in X'. Any fE X'
which is not structurally stable is a bifurcation point. Our objective in this section is to dis-

cuss some of the most elementary bifurcation points.
Following Andronov and Leontovich [II (see also Andronov et al. [1]) except for

terminology, we say fE X " is a bifurcation point of degree 0 if it is structurally stable. It

is a bifurcation point of degree I if it is not of degree zero and every g in a neighborhood
off is either of degree zero or equivalent to f. It is a bifurcation point of degree 2 if it is
not of degree 0 or 1 and every g in a neighborhood off is either of degree 0 or I or equiva-

lent to f. Similarly, one defines a bifurcation point of degree k.
The bifurcation points of degree one are the simplest types that can occur. They cor-

respond to those vector fields which satisfy all of the conditions for structural stability ex-
cept one and the condition that is violated must be done so in the simplest way. To be

more specific, suppose an equilibrium point x0 = 0 off is not hyperbolic. This can occur
only when A = af(O)/ ax has an eigenvalue on the imaginary axis. Now consider all g near
fwhich have an equilibrium point near zero which is not hyperbolic. In order for all such
g to be equivalent to f, it is necessary that A has either a simple zero or a pair of simple

purely imaginary eigenvalues. If A has a simple zero and f has degree I in X,'2 r > 2. then
the bifurcation function G(a, f) in §4 for equilibrium points near x0 = 0 must have the

form G(a, f) = fP0 a2 + o(Ial) as Jal - 0, 00 * 0, and Theorem 4.8 is applicable. There
are a neighborhood W of f and a submanifold r of codimension one such that W\I' =
U1 U U2 where g E U, implies no equilibrium point near x0 , g E U2 implies a saddle and
hyperbolic node near x0 and g E r implies a saddle-node near x0 , which we call an elemen-
tary saddle-node.

If A has a pair of purely imaginary roots and f has degree I in X", r > 3, then the
bifurcation function G(a, f) in §5 for the existence of periodic orbits near x. must have

the form

G(a, f) = Poa 3 + o(la13 ) as lal - 0, 00 * 0.

This corresponds to the generic Hopf bifurcation (Theorem 5.6). There are a neighborhood
W off and a submanifold F of codimension one such that W\i =U 1 U U2 and g E U1

k-k1ci.Dli4O PAa sL~m-NoT ni LPvD
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implies no periodic orbit near xo and g E U2 implies a unique periodic orbit near xo. We
refer to the equilibrium point of g near xo as an elementari focus if g E F.

The condition f r f to be a bifurcation point also can occur when a periodic orbit y
becomes not hyperbolic. Let y = {O(t, p), E R) where 0(t, p), 0(0, p) = p, is a periodic
solution of i = f(x). Let Lo be a transversal to y at p and ir: Lo  + Lo be the Poincar6
map. Then ir(p) = p and not hyperbolic implies n'(p) = 1. If f has degree one in X2,

r > 2, then it must necessarily be true that ir"(p) :* 0. This means that 7r(p + u) - (p + u)
in a neighborhood of u = 0 behaves like a quadratic function in u. Then there will be a
neighborhood W of f and a submanifold r of codimension one such that W\F = U, U U2

and g E U, implies no periodic orbits near -y (no fixed points of ir near p) and g E U2 im-
plies two hyperbolic periodic orbits near y (two fixed points of 7r near p), one unstable and
the other asymptotically stable. if g E F, then there is a unique periodic orbit near -Y, stable
on one side and unstable on the other. Having g E r is equivalent to having a double zero
of ir(p + u) - (p + u) near u = 0. This result on periodic orbits can also be obtained from
the method in §4 by introducing a local coordinate system x - (0, p), x = 00, p) + pv(O),

where v(O) is a unit vector orthogonal to a,(O, p)IaO. If t is replaced by 0 in the new equa-
tions, one obtains a scalar equation for p as a periodic function of 0, a special case of equa-
tion (5.8). Theorem 5.2 is then applicable.

If the equilibrium points and periodic orbits are hyperbolic and f is a bifurcation point,
then there must be a trajectory connecting saddle points. However, iff has degree one, then
one can show that there must be an orbit whose a- and w-limit sets are the same point-a
homoclinic orbit. This situation is more complicated to understand than the previous ones
because it is a global problem for which the discussion cannot be restricted to the considera-
tion of only the fixed points of a map.

To describe the behavior near a homoclinic orbit, suppose zero is a saddle point off.

f(0) = 0, af(O)/ax has eigenvalues X < 0 < M. If W', W' are the stable and unstable mani-
folds of 0, then there is a homoclinic orbit through zero if and only if (W" n Wu)\{O) * 0.
If po E W n W", po * 0, then the orbit 0(p o) through p0 approaches zero exponentially
as t -. +o If 7 = 0(po) U {0}, then the invariant set -t can have either of the configura-
tions shown in Figure 5 with respect to the position of the stable and unstable manifolds of
zero. In order to be specific, we suppose the situation in Figure 5a occurs. The other case
is discussed in a similar way.

W f

/W

u f

FIGURE 5a. FIGURE 5b.
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Let Lo be a transversal to ' at po. Let L+ (L-) be that part of Lo interior (exterior)

to -' in Figure 6. There Is a neighborhood U of po such that, for any p E U r) L+, there

is a r = 7(p) > 0 with x((p), p) E L+, x(t. p) 4 L+, 0 < t < ,(p), where x(t, p) is the

solution of i = f(x) through p. If z 0 (p) = x(r(p), p), then, for any integer k, positive or

negative, one can define As(p) on some subset of L' depending on k. The map %O is like

a Poincard map relative to the interior of -y. It is not defined at po and r(p) -- ,cas p - po.

FIGURE 6.

DEFINITION 6.1. The homoclinic orbit is asymptotically stable (unistable) if 0( p)
-' s k - - (k - - -). It is exponentially asymptotically stable (exponentially un-

stable) if the approach to po is exponential.
One can show that the stability (or instability) of y is exponential if and only if

go = tr af(O)Iax = X + M < 0 (or > 0) (see Andronov et al. [I, Chow and ale I 1).
There is a neighborhood W of f such that each g E W has a unique zero near x = 0.

By translation of variables, we can assume g(0) = 0. Let Wg, W. be the stable and unstable
manifolds of zero. Since these manifolds are smooth in g, there are points Pu.g of first col-
tact with Lo (p,,, of last contact with L.) with respect to increasing t so that one of the
pictures in Figure 7 prevails.

U 
wit

Wg

U19~

L0

//

FFIUUREa 7b.
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If case (b) prevails, then g has a homoclinic orbit through 0. If F = {g G W: PU,g =

P,,}" then one can show that F has codimension one for a sufficiently small neighborhood
Woff If W\F= U U U2. suppose g E U, coincides with Figure 7a and g E U2 coin-
cides with Figure 7c. If g E U1, then there is a neighborhood V of y containing only the
critical point zero, such that every solution with initial value on 1g, the segment between

Pu.g and Ps.g, leaves V in negative time. Thus, the behavior of solutions near ' is deter-
mined by what happens to the positive orbit O(pu.,g) of p.,.- If -y is asymptotically stable,
then O+(Pu.,g) remains in V and the Poincar6-Bendixson Theorem implies there is a periodic

orbit in V. If it is further assumed that y is exponentially asymptotically stable, then there
is a unique periodic orbit in V (see Andronov et al. [I] or Chow and Hale [1]). If 7Y is ex-

ponentially unstable, then O+(Pug) leaves V in finite time.
If g E U2 , that is, Figure 7c prevails, then the behavior of solutions near Y is deter-

mined by the negative orbit 0 -(psg) of ps,g" If y is unstable, then there is a periodic orbit
in V and it is unique if y is exponentially unstable. If y is exponentially asymptotically
stable, then 0 -(Pug) leaves V in finite time.

Finally, one can show that f having hyperbolic equilibrium points and periodic orbits
is a bifurcation point of degree I if and only if oo = tr af(O)/3x : 0; that is, the stability

or instability of y is exponential (see Andronov et al. [I ]). These results are summarized in

THEOREM 6.2. A vector field f E X, r > 3, is a bifurcation point of degree I if and

only if there are a neighborhood W of f and a submanifold F of codimension one in W such

that W\F = U1 U U2 where each g E U, is structurally stable but g -# h if g E U1, h e U2.

Then only one of the following situations prevails:
(i) g E r has an elementary saddle-node at x o, there are no equilibrium points of g

near x o if g E U, and a saddle and node near x o if g E U2 .
(ii) g E F has an elementary focus at x o , there is no periodic orbit of g near x o if

g E U, and a periodic orbit near x, if g C U2 - the generic Hopf bifurcation.
(iii) g E r has a periodic orbit y which is stable from one side, unstable from the

other, g E U, has no periodic orbit near y and g E U2 has two hyperbolic periodic orbits

near -y.
(iv) o = tr af(O)/ax * o, g E F has a homoclinic orbit containing a saddle point x o,

g E U, has a saddle near x o and no periodic orbit near y, g e U2 has a saddle point and a

unique hyperbolic periodic orbit near -1 which coalesce as g - F.
(v) There is a connection between two distinct saddle points.

Each of the cases (i)--(v) is shown in Figure S.

There is another interesting phenomenon that can occur with a bifurcation point of

degree I . In case (i). the unstable manifold of the saddle could be connected to the stable
manifold of the node to form a closed curve as in Figure 9a. They may then coalesce and

disappear to form a hyperbolic periodic orbit.
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Using Theorem 6.2, Sotomayor II] has proved the following interesting result. Let
H = {g: [0, 1 J - X, g a C'-function, r > 5} with the topology of uniform converge ce
of the function and its derivatives. Let H1 C H be the subset of functions which have the
property that, for any g E HI , there is a finite set of points/Mj .... , p. in [0, 11 such that

g(,u) is structurally stable for A t p1 , g(pi) is a bifurcation point of degree I in X" and the
curve defined by g is transversal to the set F1 of Theorem 6.2 corresponding to the bifurca-
tion point g(pI). Sotomayor [II has proved that H, is residual in H; that is, one can as-
sume that the bifurcation points on a given curve of vector fields generically will be of the

type stated in Theorem 6.2.
Teixeira [I I has generalized the theory of first order bifurcations in the plane to the

case where the vector field is required only to be transversal to a disk except at a finite num-
ber of points. Newhouse and Peixoto [I I have shown the interesting fact that one can al-
ways pass from one Morse-Smale system to another by a one parameter family of vector
fields for which every bifurcation point is a saddle-node. This result is valid in dimension n.
Generalizations are in Newhouse [21.

The higher order bifurcation points are difficult to classify and only the case of degree
2 has been completely resolved. The local problem near a generalized saddle-node has been
discussed in §4 and near a generalized focus in §5. Leontovich [11 has discussed the gen-
eral case near a homoclinic orbit. For further results, see Andronov et a!. |1], Takens [2].
An example will be given later of a higher order bifurcation near an equilibtium point.



7. Two dimensional periodic systems

In this section. our objective is to discuss subharmonic bifurcation, bifurcation of

homoclinic orbits and the bifurcation of tori for periodic two dimensional systems. The

equation is chosen to have a simple form in order to minimize the notation. Using the

same methods, generalizaIions are possible (see, for example, Chow and Hale I I).
Suppose f: R - R is a C"-function, r _> 2, F: R --- R is continuous and periodic of

period one. The equation to be considered is

(7.1) = , .' x) -Y + ,F(t)

where ( X. P) E R varies in a neighborhood of (0. 0). 1 he unperturbed equation is

(7.2) x = y. . (x).

Suppose equation (7.2) has a periodic orbit Fk of least period k, where k is a positive

integer.

Problemn SB. Find a neighborhood U o I'k and a neighborhood V of ( . A ) = 0 such

that, for each (X. M) C V, one knows cxactlYi the number of k-periodic solutions o (7. I

which belong to U as well as their stability properties.

A periodic solution of (7.1 ) which is k timeS the period of tile forcing function Hi(t) is

called a subharmonic solution of order k.

A solution of Problem SB requires some lipotheses. It' V k Ilk (M. p (t 1. 1 t- R

where ( pk(t). Ik(t)) is a k-periodic solution if (7.2 . then the derivative of this funci ion is

a k-periodic solution of the linear variational equation

(7.3) .i" -Y, .i; - 3 (pkMt)IIax(I .

We suppose tile set of k-periodic solutions of (7.3) is one dimensional. The periodic orbit

I'k of the Hamiltonian system (7.2) must belong to a smooth fainilN of periodic orbits 1".(al
of period w(a) where a is a real parameter in (- e. e) with to(0) = A. One can show the

hypothesis on equation (7.3) is equivalent to o'(0) * 0. This hypothesis is generic with re-
spect to the class of vector fields fE C2 (R, R), n > 2, with the Whitney topology. Also.

if Fk is sufficiently close to a homoclinic orbit, then the above hypothesis is alwa's satisfied.

(See Brunovsky and ('how I I I ).

If we define the I-periodic function hk(a) by
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T 0 P(t)dt'

(7.4)

hk(a) = 17' fok(t)FRt - a)dt,

then we can prove the following result due to Hale and Tdboas III (for an abstract version,

see Hale 191).

THEOREM 7.1. Let am, aM be respectivelv the value of a in 10, 1 ) for which hk(a)

is a minimum, maximum and suppose h"(am) > 0, I'k(aM) < 0. Then there are neighbor-

hoods U of -k' V of (X, M) = (0, 0) and two curves Ck , Ck C V containing (0, 0), tangent

respectively to the lines X = hk(am)'p, X = hk(aM)pu at (0, 0), dividing V\{0} into two dis-

joint open sets Sk', Sk such that equation (7.1) has no subharmonic solution in U fir

(A, u) E Sk and at least 2k for (A, u) in S k

We remark that the hypothesis on h is generic in F E QR, R), F(t + 1) = F(t).

In the proof of this theorem, it is shown that 2k sublarmonic solutions appear as ,/p

decreases through a maximum (increases through a minimum) of hk(a). Thus, if the tunc-

tion hk(a) has no other maxima or minima in [0, I), then the conclusion in Theorem 7.1

can be strengthened to say there are exactly 2k subharmonic solutions for ( X,,/1) E S".

Only the idea of the proof will be given. There is a neighborhood U of Fk., 6 > 0,

such that the mapping

x = p(a) - a (a). y = f;(a) + afi(a)

is a one-to-one C' transformation from U onto [0, k) x { la < 6) . Tlius. it is sufficient to

consider only k-periodic solutions of the form

x(t) = p(t + a) + z(t + a), )'(t) = 'i(t).

z(a) = -ap(a). i(a) = afi(a)

with lal < 6, a E (0, k). If this change of variables is performed. then the method of

Liapunov-Schmidt can be applied to obtain the usual bifurcation function B(a. X. M). This

function has the form

B(a, X, p) = X-7 + Pr1khk(a) + O0 I1 4 IUI) 2  as 1, pl1 -- 0.

The remaining argument is a careful analysis of the zeros of this function (see Hale and

Tdboas [11).

For a given o., A, p for which B(a, A, p) = 0, one obtains a k-periodic solution which

is close to (p(t + a), I4t + a)). The constant a corresponds to a phase shift and is approxi-

mately determined from the relation hk(a) = A/p. If h;(a) ; 0 for a : am. aM , then one

can associate a unique a = a*(//p) with ,/p. As A. p - 0. this function a *(A/P) will ap-

proach a limit if and only if A/p approaches a constant. This implies that the initial values

of the corresponding k-periodic solution (which are approximately p(a *( A/p), p(a *(A/,u)))
will converge to a point on I'k as A, p - 0 if and only if A/M approaches a constant as
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X,/- 0. This points out one of the disadvantages of treating the original two parameter

problems in (X, 1A) as a one parameter problem along a ray (. m,), m fixed, in paramete
space.

Using the results of §4, if h(a) has a finite number of exiremal values in 10. I ). one
can show that there are at least 2k hyperbolic subharmonics of order k with k being saddles
and k being either nodes or foci (see, for example, Chow and Hale Ill).

A specific example of equation (7.1) is

(7.5) - + X -Xi + pF(t).

y

FIcuKF. (0.

For (N, p) (0. 0), the phase portrait is shown in Figure 10 with any neighborhood ot tile
homoclinic orbit r-,, containing periodic orbits P,()with period cwAa), where (a, 0) is the
initial value of the solution at t =0. One can show that ow(a) - - as a -- a,, Ionotoni-
catty. Thus, there is a sequence 0ak a_,, such that W(ak) =k for k > k,0 (= 7). The pre
vious results can be applied to each such fT k for the subliarmonic bifurcation curves At, A~

This suggests that the behavior of solutions of (7.1 ) near 1'_,, could be very complicated. We
show that this is actually the case.

Suppose f(0) = 0. f'(0) < 0 and there is a homoclinic orbit r-, through a0 0).
(,, (p-,,(t), p,,,,()), t E RI U ((0, 0)1. where p-0,() - 0 as t - ± -is a solution of'

(7.2). Since (0, 0) is a saddle point, there are a neighborhood V of (X. Mi) (0, 0) and a
I -periodic solution (0(1, A, p'). of, X, ju)) of (7.1) for (A, p) E V, Ott, 0, 0) 0, Further-
more, the trajectory -y,, C R x R2 of this solution has stable manifold S,.., and unstable
manifold U,.,, with I -periodic cross-sections

SX'M(t) = f{(x, y): (t. x, j,) E S .JI UN,,() {(X, *i): (1, x, t)E

Let ir be the period one map of equation (7.1). Then p,\, (0(0, X. u), 0(0. A. 0)) is a
fixed point of 7r and Sxv(0). U,.,(O) are the stable and unstable manifolds of p.

Pfnbiem HB. Find a neighborhood U of P_,, and a neighborhood V of'(X. Mi) - (0. 0)
such that, for each (X, p) E V, one knows whether or not there is a point q E U which is
transverse homocinic to p,,,
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As noted in §3, the existence of a point which is transverse homoclinic to p.. im-

plies a type of random motion occurs in a neighborhood of '*,. Our primary concern here
is to show how the transverse homoclinic point occurs through bifurcation and the connec-

tion with the previous problem of subharmonic bifurcation.
Define the I-periodic function h.(a) by

(7.6) ri.= f.i.t)dt, h_(a) =7-, f ( t - a)dt

and assume that

(7.7) h"(am ) > 0, "(aM ) < 0

where a,. aM are the values of a at which h assumes respectively its minimum, maximum.
We have the following result of Chow, Hale and Mallet-Paret (21.

TtOi-:ot:M 7.2. There are neighborhoods U of. r, V of ( A. p) = (0. 0) and two
curves C:, C; C V containing (0, 0) tangent respectively, to the lines ,X = h(om )U. X

t,.(Q,),u at (0, 0), dividing V\((0. 0)) into two disjoint open sets S-, S7 such that equa-

tion (7.1) has no homoclinic points in S,_ and has transverse honoclinic points in ST .
In any neighborhood of any point (X. p) in the bifurcation set C,, U CZ. there are

infinitely mnany subarmnonic bifurcations of the type in Theorem 7. 1.
Finally. if h.(a) has only a finite number of zeros in (0, 1 ). then the period one map

ir has infiniteli' many hyperbolic saddles and nodes (or foci) in U for I X, P) E S .

Note the conditions on h_ are generic in F
The proof of the first part of this theorem follows along the same lines as the proof

of Theorem 7.1 for subharmonic solutions. One must replace the Fredhohm alternative for
periodic solutions by a Fredhoin alternative for solutions bounded on R. This gives rise to

the function h.(a) in (7.6), a function whose importance in this problem was emphasized

by Mel'nikov I11. To prove the part on subharmonic solutions, one shows that condition

(7.7) implies the corresponding conditions in Theorem 7.1 are satisfied for each hk(a) for
which 1'. 9 U. See Chow, Hale and Mallet-Paret I! for details.

Holmes [!] has also proved the first part of Theorem 7.2 dealing with the existence
of homoclinic points. Closely related results for Hamiltonian systems have been obtained by

Churchill. Pecelli and Rod (11. Holmes and Marsden III have extended the first part of
this theorem to certain types of partial differential equations and have applied the results to

the equations for a beam. In this case, technical difficulties primarily arise from the fact

that the sentigroup generated by the linear part of the unperturbed system has spectrum
which can include the complete unit circle. A new phenomenon arises because the spectrum

contains one. This can also occur in the finite dimensional case. For example, consider the

equations in R3 .

X -x + x2 -1k + pFit) + H(x, Y), X = -Xy + p(t) + L(x, y)



DYNAMIC BIFURCATION THEORY 41

where F, G have period 1, H, L vanish together with their first derivatives at x = 0, y 0
and H(x, 0) = O(Ix13) as lxl - 0, L(x, 3) = 0. For X = p= 0, this equation has a homo-
clinic orbit in the (x, i)-plane. The equilibrium point x = 0, y = 0 is not a saddle since
one eigenvalue is zero. To discuss homoclinic orbits for the perturbed equation, one must
find first a periodic solution of period one. The difficulties involved are the same as the
ones encountered in finding a 1-periodic solution which approaches zero as X, A - 0 of an

equation of the form = -) y + pG(t) + M(y) where M(y) = O(jyl 2 ) as Iy -- 0. Given
the first nonvanishing coefficient of My) and assuming that f, G(t)dl * 0, this puts re-

strictions on the parameters X, IA. For example, if M(y) = 0yt + O(lylk + 1), ? : 0, then
k = 2 implies Pf/) 3 approaches a constant as X - 0. If k = 3, then p A;2 approaches a
constant as ) - 0. Once the I-periodic solution has been obtained, it is not too difficult
to adapt the previous ideas to obtain a transverse homoclinic point in some region of the
parameter space.

It often occurs that one is interested in studying problems wherr- the orbit P_ is not a
homoclinic orbit, but is the closure of an orbit connecting two distinct equilibrium points.
To obtain a generalization of Theorem 7.2 for this case, we give a procedure motivating the
appropriate formula for the corresponding function h,(a). Consider the equation (7.5) with

X = 0. Suppose there is a homoclinic orbit for ) small. It must be close to p_. If it has
the form p, + puq + o(IlAI) then q satisfies the equation q + f'(p.)q = F(t). Multiply
by , integrate from 0 to o , and integrate the term p.it by parts twice. The result is

-p.(O)q(O) = fJ0 Ft)p.Q) dt.

Doing the same thing but integrating from - - to zero, one has p..(0)q(0) = fobjt)i_(t)dt.
Since pj,(0) * 0, this implies f.F(r)p.(t)dt = 0, which is the same as h,(0) = 0.

Let us turn our attention now to the bifurcation of tori. Suppose G: R2 -* R 2 ,

F: R x R2 x Rk 
- R 2 are C-functions, r > 2. Ft, y. e) periodic in t. F(t. y, 0) = 0, and

consider the equation

(7.8) . = G(y) + bt. .y, e).

For e = 0, suppose this equation has an w-periodic orbit P. In a neighborhood of I' one
can introduce a moving orthonormal coordinate system (p. 0) which is w-periodic in 0. The
new equations for (p. 0) have the form

(7.9) 6 I + (t, ,,e), R(z, 0, p,e)

where 8, R are periodic in t, 0, E(t, 0, 0, 0) = 0, R(t, 0, p, 0) = ap + O(1p12 ) as IpI -- 0.
If a 96 0, that is, the orbit P of (7.8) for e = 0 is hyperbolic, then the classical results on the
theory of integral manifolds (see, for example, Hale II I) imply the existence of a function
p*(t 0, e), p*(t, 0, 0) = 0 defined for all t, e and periodic in both variables such that
(8(t). p*(t. 0(t), e)) is a solution of (7.9) for every solution 0(t) of

= + (t. 0. p*(t 0, C), ).
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For equation (7.8), this implies the existence of an invariant cylinder in R x R2 with peri-
odic cross-section near the cylinder R x I'. Since the cross-section is periodic, the flow on

the cylinder is equivalent to the existence of a flow on a torus. If the original orbit r is not
hyperbolic, one must determine more explicitly how the nonlinear terms influence the flow.
We return to th.s problem later.

Suppose H: R3 x Rk - R 3 and consider the equation

(7.10) i = H(z, ).

Suppose for c = 0 this equation has a smooth invariant torus T 2 on which the flow is parallel;
that is, either the rotation number is irrational or every orbit is periodic. It is possible to intro-

duce coordinates (p, 0, ) in a neighborhood of T 2 such tiat equation (7.10) is equivalent to

(7.11) = I +z(, 0.p,e), 0= I + 8,0,p., e)d, p=R(Q,0,p,e)

where all functions are periodic in ', 0 and vanish for (p, e) = (0, 0). Any integral mani-

fold of equation (7.11) which can be represented by a function p*(. 0, e), periodic in ', 0
with the same period as the vector field, will correspond to an invariant torus of (7.10).

If the original torus T 2 is hyperbolic, then equation (7.10) will have a unique invari-
ant torus in a neighborhood of T 2. We will discuss some aspects of the problem when T 2

is not hyperbolic. Note that equation (7.9) can be considered as a special case of equation

(7.11 ) by putting t = '.
To be specific, suppose e = (X. p) E R2 and

(7.12) R(t,O,p.X.u)=p + pf(0. -) + xg(o, + ( ,0,p. X,)

where R O(1p1 3 + (Il + IXI)(Iml + 1X1 + pl)) as IX1. Il, Ipl -- 0. For (X, A) = (0, 0),
equation (7.11 ) has the invariant torus p = 0 which is asymptotically stable from one side
and unstable from the other. One would suspect that there are no invariant tori for some
(X, p) near zero and two invariant tori for other (X, p): that is, there is a bifurcation of tori
similar to the saddle-node type bifurcation for equilibrium points. We will confirm some of
these suspicions and also point out that other phenomena can occur.

Let us first consider the one parameter problem with X = 0. If

(7.13) fo lim f f(0 + t, + 0dr

is independent of (0, ') (this is a nonresonance condition), then the scalingp -p "/Ip-lp
can be justified. Using the standard method of averaging (see Hale (11, Diliberto [I). there
is a transformation of variables which takes (7.11) into an equivalent equation

= I + O{IpJ'/ 2 ), 0 = I + O(1 11 M),

I pi l/'(p 2 + fosgn u) + o(hji' 2 )

as 1Il - 0. Integral manifold theory implies there are no invariant tori if f0 sgn p > 0 and

two hyperbolic invariant tori iffo sgn p < 0.
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lfg 0 = limT_-T-tf 0
Tg(6 + t, + t)dt is independent of 0, " and X, = 7, then one

can apply the same result to the complete equation (7.11 ) with the only change being that

-o sgn p is replaced by (fo + ygo)sgn 1j. If this quantity is > 0, there are no invariant tori

and if this quantity is < 0, there are two invariant tori.

From the above discussion, we have obtained the following result. ffJo * , go :k 0,

then, for any -f for which fo + ug, 0 0, there is a po = p0 (I. fo, go) such that on the

line segment L,, = {f(, p): X = yp, 0 < Ill </ Ao), there is no invariant torus of (7.11)

in a neighborhood of zero if (fo + "ygo )sgn pu > 0 and there are two hyperbolic tori if

(fo + Ygo )sgn /j > 0.

This result implies a complete solution of the problem of bifurcation of tori except in

a sector S.10 containing the line segment I.o1 7 = -fo/go (see Figure I I). This sector

must be tangent to Lyo at (0, 0). If one assumes the vector field is C- with the coeffi-

cients in the Taylor series in p being trigonometric polynomials and the ratio of the periods

in 0, " are irrational, then it is possible to show that the excluded sector S'ro is tangent to

L at (0, 0) to infinite order.

/
/

//

/

FIGIJRt !iI.

What happens in S. 0 is very complicated. In fact, when the two tori come too close to-

gether, then generically the rotation number is rational and hyperbolic periodic orbits ap-

pear. The two invariant sets then can meet at these hyperbolic periodic orbits and then

change topological structure. An illustrative example of the cross-sections of these sets is

shown in Figure 12 as the generic bifurcation takes place. The interior set is exponentially

stable in Figure 12a and the exterior one is unstable exponentially. The points correspond-

ing to the periodic orbits are hyperbolic--all being saod!t points except for the nodes .4. B.

C, D. In Figure I 2b, the saddles remain and thepoints A. B are saddle-nodes. In Figure 1 2c,

the invariant sets that were similar to tori have disappeared leaving only hyperbolic orbits.
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The complete structure of the solutions in SYo is not known. The author is indebted to
Brunovksy and Chow for conversations about this problem.

C

B D

FIGURE 12a. FIGURE 12b. FIcURE 12c.



8. Iher order bifurcation near equilibrium

In §6, the vector fields in the plane corresponding to bifurcation points of order one

were completely characterized. Higher order bifurcation in any dimension were discussed in

§ §4, 5 for the case of a generalized saddle-node or focus. In this section, we give two illus-

trations of a bifurcation point of order two near an equilibrium point for which the com-

plete analysis requires concepts which are global in nature-in particular, involve knowledge

of homoclinic orbits and invariant tori. One vector field is two dimensional for which the

matrix of the linear approximation near zero has both roots zero but with nonsimple ele-

mentary divisors and is based on Howard and Kopell i1]. The second illustration is a three

dimensional vector field with the matrix of the linear approximation near zero having two

purely imaginary and one zero root. The relevant literature for this latter example is Lang-

ford [II, Guckenheimer 131, Chow and Hale I1I

Consider the equation

(8.1) x = Y, =ex + e2 Y + ax 2 +  XY

where a < 0, 0 > 0 are fixed constants and e = (C1 , C2) is real, varying in a neighborhood

of zero.
Knowing the behavior of (8.1) will also determine the behavior for the case C # 0.

t3 * 0 since the change of variables t - -t, e2 - -21 x + -x, y -- T y will yield the

above case. Also, the form (8.1) is chosen for simplicity and the qualitative structure

will be unchanged if perturbations (X, Y) in the vector field are made which satisfy

X = O((IxI + lyl) 2 + 1EI(lxl + lyl)), Y = O((lxI + tyj)2(l + lel)).

The objective is to discuss the qualitative behavior of the solutions of (8.1) in a neigh-

borhood of (x, y) = (0, 0) for e varying in a neighborhood of zero.

First, we consider the case e, > 0. The introduction of the scaled variables

CI =62, E2 = 2, b>0,

(8.2) t 1c- -t, X 1-_621al-IX. y " 31all-ty

leads to the new equations

(8.3) *r Y, x - x2 + A~y + SyXy

where 7 --= Oll-
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For 6 = 0, equation (8.3) is conservative with the first integral V(x, y) y 2/2 -

x 212 + x 313. The equilibrium point (0, 0) is a saddle point with a homoclinic orbit I',
through it while the equilibrium point (1, 0) is a center. The first step is to analyze the
periodic orbits of equation (8.3).

LEMtA 8.1. Every periodic orbit of equation (8.3) must intersect the segment (0, 1)
x {0) in the (x, y)-plane. There are a continuous positive function 60 (b), b E (0, 1), and

a continuously differentiable function M *(b, S), b E (0, 1 ), ISI <8 0 (b) such that equation

(8.3) has a periodic orbit if and only if ja = p *(b, 6). Furthermore, du *(b, 0)Idb < 0,
p *(b, 0) - -,y as b - 1, p *(b, 0) - - -y/7 as b - 0. Finally, if p = p *(b, 6) for a

fixed b E (0, 1) and 151 < 50 (b), then the periodic orbit through (b, 0) is the only one cor-
responding to this p, S.

Only a sketch of the proof is given (see Chow and Hale [11 for details based on Carr
[1)). The first statement is obvious since the index of a periodic orbit is one. If b E (0, 1)

is on a periodic orbit P, then fr V dt = 0. Using the fact that the orbit r must be symmetric

with respect to the x-axis, this implies that

PJ*c(b)y2dX + 7fr(b) xy
2 dx = 0

where (c(b), 0) E F, c(b) > I. This definesp *(b, b). The other assertions require a number

of computations which will not be given.

Let r. = ((p.(t), f,.(t)), t E R} U {(0, 0)) where p. is a solution of (8.3) for
e = 0, p.(t) -- 0 as t - ± -. Using the type of analysis in §7, one can find a unique
curve in the (p, 6)-plane for 8 small along which equation (8.3) has a homoclinic orbit. This
gives a curve C. in the e = (e1 , e2)-plane defined for 0 < [el < co parametrically by a func-

tion ea = c(e 12 ) e, where c(O) = -yv, v = 1'_.q.4,/f2.4 2 . On C., the homoclinic orbit
is asymptotically stable from §6. Using the formulas which define the homoclinic orbit from

Chow, Hale and Ma~let-Paret [2], one shows that there is a unique periodic orbit to the left

of C. To the right of C, every solution of (8.3) leaves a neighborhood of F..
To the left of C. and close to C. where the periodic orbit exists, this orbit passes

through (b, 0) where b is close to zero. Lemma 2.1 implies that this orbit continues to exist
and is the unique periodic orbit on the ray e2 = p *(b, 8)c, . Thus, as long as b remains in
an interval (0, 1 - d], d e (0, I ). we have the existence on a uniform 6-interval 0 < 11 <
60 (d). To obtain a uniform 8-interval for b E (0, 1). we analyze carefully the neighborhood

of the equilibrium point (I, 0). The matrix of the linear variational equation near the equil-
ibrium point (I, 0) has complex eigenvalues with real parts 6(P + -t) and are ± i at 8 = 0.
The bifurcation function G(a, 8, 1p) for periodic orbits obtained as in §5 is an analytic func-
tion of (a, 6, 1j) near (a, 0, --f). Also, G(a, 0, p) = 0 for all (a, M) since equation (8.3) for

6 = 0 has a first integral (Corollary 5.4). Since G(O. 6, j) = 0 for all 8, pu, this implies
that the bifurcation equation G(a, 5, p) = 0 can be replaced by the equivalent equation

H(a, 8, p) = 0, where H(a, 5, p) = G(a. , p)/ab. Also, H(0. 0, M) = u 4 6 + (terms

. .~ .
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vanishing for (a. 6) = (0, 0)). The Implicit Function Theorem implies there is a unique func-
tion I*(a, 6) such that H(a, 6, p *(a. 6)) = 0 for lal <a o , 161 < 6o. This gives the addi-

tional uniformity in 6 for b near I.
Combining all of this information, the half-plane e, > 0 can be divided into four sec-

tors as shown in Figure 13a for which the corresponding flows are given in Figures 13b, c, d.

FIGURE 13a. FIGURE 13b. Sector 1.

FIGURE 13c. Sector 2. FIGURE 13d. Sector 3.

Arnol'd [1, p. 2551 has considered the same nonlinearities as in (8.1) but with the
perturbation term e, + e~x.

Carr (11 has given a complete discussion of the bifurcations in the more complicated

equation i = y, , = eIx + + ax 3 + jPx2y.
The next example is concerned with a differential equation in R3 for which the linear

variational equation near the equilibrium point zero has two purely imaginary eigenvalues
and one zero eigenvalue. To simplify the situation, it will be assumed also that a certain
type of symmetry prevails. More specifically, consider the equation

(8.4) x = A(X)x + .(x, y), i = Py + g(x, y)

where X, are small real parameters, x E R2 , y E R, f, g are C 4-functions,
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f(x, y) = O(lx(tx + IYI)). Ax, y) = O(Ix1 + Iyi) 2

as Ixl, ly 0. The hypothesis on (implies that the symmetry condition

(8.6) f(0, y) = 0

is satisfied.
Since f(O, y) = 0, it is legitimate to introduce polar coordinates for x = (x,, x 2) as

x = p cos 0, x = -p sin e. If this is done and t is replaced by 0. one obtains the equa-
tions

(8.7) =Xp +R(O p, y, c, 0), fly + Y(O, p, y.a,)

where R = O(Ipl(Ipl + lyl)), Y = O((IpI + lyi) 2 ) as P. Y " 0.
The problem is to determine the behavior of the solutions of (8.7) in a neighborhood

of (p. y) = (0, 0) for (X, P) in a neighborhood of (0, 0). To discuss (8.7), we suppose that
an application of the theory of normal forms to (8.7) yields the system

(8.8) p = p(. + ay + bp 2 ) + O(p(IpI + ly) 3 ), y = py + cV2 + dp 2 + O((Ipl + 1.yI)4)

as p. y -- 0. The generic situation is to have a. b. c, d nonzero constants.
To simplify the computations and also to consider the most interesting case, we sup-

pose a = 2, b = 1, c = d = - I. so that the truncated form of (8.8) using only the lowest
order terms is

(8.9) p=p(X + 2Y + p2), pv - y 2 - p2.

The first objective is to discuss the behavior of the solutions of (8.9) as a function of a. 0.
It is convenient to introduce the change of variables y F-- 0/2 + y. A, + 0 i a. to obtain the

more symmetric form

(8.10) p = p(a + 2., + p'). #=32/4 -v 2 - p.

If we perform the scalings

(8.11) P -- ep, y -k., 0 "E, a -Eck, I i- t

the new equations become

(8.12) A = 2pv + ap + ep3 . 1=i/4- y2 - p 2 .

Lquations (8.12) must be discussed for all p > 0. y E R, a E R and e in a neighborhood of
C -- 0.

For a = 0, e = 0, the function

(8.13) V(p. y) = p/4 - py2 - p13

is a first integral o" (8.12). Differentiating this function along the solutions of (8.12). it is
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not difficult to see that no periodic orbits can exist unless a = 0 when E = 0. This remark
makes much of the discussion of (8.12) very simple since it is only necessary to determine

the structure of the equilibrium points away from the critical value a = 0, e = 0.
The equilibrium points of (8.12) are p = 0, y ± 1/2, for all cz, e and the point y =

- /2, p2 =(1 - a2)/4 fore = O, Q2 < 1. For * 1 the points p = 0, y = + 1/2 are hy-
perbolic saddles or nodes. Further analysis of the other equilibrium point for a 2 < I shows
that the original (X, p)-plane, X = i - , P = e, can be divided into sectors as shown in
Figure 14a with the corresponding phase protrait for 0 > 0 given in Figure 15. The situation
is similar for 0 > 0. There is a saddle-node bifurcation on each of the solid curves in

Figure 14a. The analysis in a neighborhood of the dotted line X = -( requires further study
and will now be given.

S A

'I

2

FIGURL 14a.

I \

Hopf ' homoclinic

FIGURE 14b.
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FIGURE 16.

For a 0, e =0 in (8.12), the phase portrait is determined by the first integral
V(p, y) in (8. 13) and is shown in Figure 16. There is a heteroclinic orbit connecting the
two saddle points. Let (p 0 (t), y0 (t)), p(t) >O0. be the solution of (8.12) for a e = 0
such that po(t) - 0 as t -~ ± o, yo0 Q) -~ - % as t -~ - o. yo0 Q) - % as t - s Using
the remarks after Theorem 7.2, one can obtain a function G(a. e) for jal, Idj < 5 such that
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equation (8.12) has a heteroclinic orbit if and only if G(a, e) = 0. Furthermore, the func-
tion G satisfies

G(. C) = f_ P(t)dt +F f" P,(t)dt + o(( l, + I) 2 )

as ct, e - 0. The Implicit Function Theorem implies there is a unique solution a = a *(e)
of this equation for e sufficiently small, a *(0) = 0 and

-6der dc,*._) _ = /!

de - PO(t)dt -PO(t)dt =-

This gives a curve X = X*(t3) in the original parameter space (X, 0) where there is a hetero-
clinic orbit for equation (8.10). This curve is given approximately by X*(O) = -0 - 32 .

Near tile line X = -0 (or a = 0), there is also a Hopf bifurcation. Near a = 0, e = 0.
equation (8.12) has an equilibrium solution given approximately by yo = -(a + E/4 )/2 .

Po = 1/2 + y.. Analyzing tile stability properties of this solution, we see that it has eigen-
values on the imaginary axis along a curve given approximately by a = -3e/4 or A = -0 -
332/4. One can actually show there is a Hopf bifurcation along this curve. Also, one can

show there is a unique periodic orbit between this curve and the one defining the homo-

clinic orbit. This implies the complete bifurcation diagram near the line X = -0 is the one

shown in Figure 14b. The flow in region 2' is shown in Figure 15. The flow on the homo-
clinic curve is shown in Figure 16. For the details of the above computations see Chow and

Hale [I.
It remains to relate the solutions of the approximate equations (8.12) to the complete

equations (8.8). Since the perturbation terms are periodic in t, it is not difficult to show

that the equilibrium points of (8.12) become periodic solutions of (8.8) and periodic orbits
of (8.12) become invariant tori for (8.8). Around the homoclinic orbit, one expects a be-

havior similar to the one discussed in §7. The precise behavior, of course, depends upon
the higher order terms in (8.8) and the method of analysis will be similar to the one in §7.

Equations (8.8) are the generic situation for two purely imaginary and one zero eigen-
value. If further symmetries occur in the problem, there may be no second order terms in

the normal form for the vector field. In this case, the simplest case for tile approximate

equations are

4 = p( X - ar2 - b.' 2 ), If = y(o + cr2 + dyV2)

with a, b, c, d fixed nonzeo constants and X, A small bifurcation parameters. In the case

of a fourth order equation with two purely imaginary roots, the same equations occur in a
natural way coupled with two angle variables. The complete bifurcation diagram for this

equation cannot be obtained without the addition of terms of order five. It is much more
difficult and the reader is referred to Holmes [21 , Guckenheimer 141 , Chow and Hale I I



9. A framework for infinite dimensions

For infinite dimensional systems, the generic theory analogous to the one discussed in
§3 is in its infancy. In this section, we outline an approach to the development of such a
theory for a special class of semigroups of transformations. This class is general enough to
include some types of parabolic and hyperbolic partial differential equations as well as re-

tarded functional differential equations and some neutral functional differential equations.
Let X, Y, Z be Banach spaces and let X" = Cr(Y, Z), r > 1, be the set of functions

from Y to Z which are bounded and uniformly continuous together with their derivatives up

through order r. We impose the usual topology on X'. For each fE Xr, let Tft): X - X.

t > 0 be a strongly continuous semigroup of transformations on X. For each x E X, we

suppose Tf(t)x is defied for each t i 0 and is C' in x.

In applications, one often is interested in open subsets of X, Y, but this presents mainly
notational difficulties and therefore will not be discussed.

We say that a point x. has a backward extension (relative to Tf(t)) if there is a func-

tion 0: (--, 01 - X such that 0(0) = xo and Tf(t)o($) = O(t + -) for all 0 < t < -7,
e G (--, 01. If x o has a backward extension 0, we define Tf(t)xo. t < 0, by the relation

Tf(t)x o = 0(t) and say that Tf(t)x o is defined for t < 0.
The positive orbit O+ (xo) through xo is 0 + (xo) = U, , Tf (t)xo. The negative orbit

0-(xo) through xo is 0-(x,) = UtoTf(t)xo if Tf(t)x o is defined for t < 0. The .-litnit

set uw(xo) of xo and a-limit set a(xo) of xo are defined as

0(xo) = n) ci U T,(t)xo, a(xo) = n cl U Tf(t)xo.
7 ,.O f ;'7 7<0 t <"

A set M C X is invariant (relative to T~t)) if, for any xo E M, Tf(t)xo is defined for

t < 0 and Tf(t)x o E M for all t E (-c-, -). An equilibrium point of Tf(t) is an invariant

set consisting of a single point; that is, an xo E X such that Tf(t)x o = x o for all t G R. A

periodic orbit y of T (t) is an invariant set which is a closed curve; that is. there are an
xo E X and an w > 0 such that Tf(t)x o = Tf(t + wo)xo for t E R, co is the least period.

and 7 = U1Tf(t)xo.

The following result is easy to prove (see, for example, Hale [5]).

PROPOSITION 9.1. If 0 + (xo) is precompact, then w(xo) is a nonemptv compact c011-

nected invariant set and dist(Tf(t)xo , w(xo)) - 0 as t -- -.

I-11ECULNGl jPAGR BiiA., h-OT 1'alkgoI
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Let

(9.1) A- = {x E X: TI(t)x is defined and bounded for t 0 01.

This set contains all equilibrium points, periodic orbits and the (,-limit sets of any compact

orbit. The set Af is invariant. For any bounded open set N C X. let

(9.2) Af(N) = {x E X: Tf(t)x is defined and belongs to N for t < 0}

PRo)POsITIoN 9.2. IfA f is compact, it is maximal compact invariant and attracts points

of X. I. in addition. Tf(t) is one-to-one on Af, then T,(t) is a continuous group on Af.

The proof is elementary.
D:VINTION 9.3. For f. g E Xr. we say f is equvalent to g, f - g, if there is a home-

omorphism h: A1  Ag such that h maps the orbits of T (t) on A onto the orbits of Tg(t)
on A. preserving the sense of direction in time. An f] X V is structurally stable if there is
a neighborhood V of f such that f - g for every g e V. An f E: Xr is a bifurcation point

if it is not structurally stable.
DFI.INITION 9.4. For f; g E .r, we say / is localltv equivalent to g in a neighborhood

of X0 if there are neighborhoods N, M ofx o and a homeomorphism h: Af(N) -- Ag(M)
such that h takes the orbits of T1ft) ol Af(N) onto the orbits of Tg (t) on Ag (M) preserving
the sense of direction in time. An fE X' is kcally structurally stable if there is a neighbor-
hood V off such that f is locally equivalent to g at x0 for every g E V.

It is important to notice that the flows defined by Tf(t), Tg(t) are compared only on
the invariant sets A1P Ag, However, in order for there to be a homeomorphism between A1

and Ag9 for each g in a neighborhood off, the set A1 must have some strong type of stabilit,
as an invariant set of T(t). We shall see several illustrations of this remark in infinite di-
mensional problems, but the idea is easily understood by comparing this definition with the
one given in §3 for ordinary differential equations in R".

Consider the equation

(9.3) -Bx + f(x)

where x G R". f(O) 0 0, 3f(0)13x = 0. If W" is the unstable manifold of zero (it could
contain only the point zero), suppose there is a neighborhood N of x = 0 such that if

xo G N\W. then there is a r < 0 such that T (r)x o E aN. it follows that Af(N) = Wu () N.
Iffis locally structurally stable at zero according to Definition 9.4. then one can show that
the equilibrium point x = 0 of (9.3) must be hyperbolic; that is, Re XB :A 0. Also, there is
a neighborhood V off such that, for each g E V, there are a neighborhood M of zero, a

unique equilibrium point x of g E M and A ,(Al) = Wu(xg) n M. In Definition 9.4. the
trajectories in a full neighborhood of zero are not compared, and they are not even com-

pared on the stable manifold. It frequently happens in applications in infinite dimensions
that the stable manifold is infinite dimensional and the unstable manifold is finite dimen-

sional. Comparison of trajectories on the infinite dimensional parts seems to be impossible.
Thus, the definition of equivalence is chosen as above.

I M M M
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To define a large class of semigroups Tf(1) which will guarantee that A, is compact,
maximal invariant and satisfies some stability properties, we need some additional notation.

Let a(B) be the Kuratowskii measure of noncompactness of a bounded set B in a
Banach space X; that is, a(B) = inf(d > 0: B has a finite cover with each element ot diam-
eter < d}. If T: X - X is continuous, we say T is a conditional a-contraction if there is a
constant k E (0, 1) such that a(TB) < ka(B) for all bounded sets B in X for which TB is
bounded. The map is an a-contraction if it is a conditional a-contraction and takes bounded
sets into bounded sets. For general properties of the measure of noncompactness and o -
contractions, see Sadovskii [I] or Martin Ill. A map T is conditionally completely' con-
tinuous, if, for any bounded set B for which TB is bounded, the closure of TB is compact.
If T(t). t _> 0, is a family of maps, we say it is a conditional a-contraction jor conditionally
completely continuous] if for each t and each bounded set B for which { T(OlB, 0 < T < t
is bounded. a(T(t)B) < k(t)a(B) for some k(t) E 10, 1) [or the closure of T(t)B is com-
pact ].

If re(T) denotes the radius of the essential spectrum of a linear operator T and
re(T) < 1, then there is an equivalent norm in X such that T = S + U where S, U are linear
operators with ISI < I and U compact (see Leggett 11 , [21 , Massatt [31). Thus, there is
an equivalent norm in X such that T is an a-contraction.

The semigroup Tf(t) is a conditional a-contraction if it is a conditional a-contraction
for each t > 0. If Tf(t) is linear with re(Tf(t)) K exp(-O3t) for some 0 > 0, then there is an
equivalent norm in X such that Tf(t) is an a-contraction for each t > 0.

PRO'OStTION 9.5. If T',(t) is a conditional a-contraction, then each bounded orbit is
precompact.

The proof is trivial since O+(xo) is invariant under Tf(t) for each t > 0.
A set K C X is said to attract a set M C X (relative to Tf(t)) if dist(T}(tM, K) -- 0

as t -- o. A set K in X is stable (relative to Tf(t)) if, for any neighborhood U of K, there
is a neighborhood V of K such that Tf(t) V C U, t ; 0. A set K in X is asvrnptoticallyv
stable (uniformly asymptoticallv stable) if it is stable and there is a neighborhood W of K
such that K attracts points of W (K attracts W).

The semigroup Tf(t) is point (local) (compact) dissipative if there is a bounded set B
in X such that B attracts each point (some neighborhood of each point) (each compact set)
of X.

PROVOSITION 9.6. if Tf(t) is a conditional a-contraction and compact dissipative,
then A f is a maximal compact invariant set and Af is unifiormli, asymptotically s:abh. 1f
Tf(t) is a conditional a -contraction, point dissipative and there is some neighborhood 0 , of
each x E X such that U, ,o Tf(t)O is bounded, then the same conclusion holds. .f Tr(t)
is point dissipative and conditionally completely continuous, then the same conclusion hods.
If. in addition, the orbits of bounded sets are bounded, then Af attracts bounded sets of' N.

For a proof of these results, see Cooperman If 1, Hale [61, Massatt Il 1.
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In many applications, the semigroup Tf(t) is not a general a-contraction but satisfies
the condition Tf(t) = St (t) + Uf(t) where SS'(t) is a linear contraction for each t > 0 and

the mapping Uf(r) is conditionally completely continuous. Also, the family of mappings

Tf(t) is a semigroup on two Banach spaces X1 , X 2 with X, compactly imbedded in X2 .

Suppose also that, for any set 8 in X, for which B and Uf(l)B are bounded in X 2 , it fol-

lows that U,(l) is bounded in X,. In this situation, Massatt [5) has recently proved the im-

portant result that point dissipative in X. is equivalent to compact dissipative in X 2 . This

is the same result as the one that is stated in Proposition 9.6 for the case when Sf(t) = 0 for

all t. Other properties of the same type of maps have been discussed by Massatt 12).

Our primary objective is to study how the set A " varies with f. The easiest result to
obtain is the upper semicontinuity in f and is stated precisely in the following

PROPOSITION 9.7. Suppose there is a neighborhood V off and a bounded set B C X

such that, for each g E V, Tg(t) is an a-contraction, B attracts compact sets of X relative to

Tg(t) and {Tf(t)H, t > 01 is bounded for each bounded set H C X. Then A1. is upper semi-

continuous at f; that is, for any neighborhood U of A f, there is a neighborhood W off such

that Ag C U forge W.

The idea of the proof is the following. From Proposition 9.6, Ag is compact and

Ag 9 B for every g C V. Also, Proposition 9.6 implies A1f is uniformly asymptotically stable

and attracts R. This is enough to complete the proof. Results similar to Proposition 9.7 for

locally compact spaces have been proved by Marchetti et al. 1I].

Before proceeding further, let us give some examples of semigroups which are a-con-

tractions. Suppose A is a linear operator (bounded or unbounded) for which -A is the

infinitesimal generator of a strongly continuous semigroup S(t) on Z. Suppose X is a Banach

space which can be continuously imbedded in Z and f: X -- Z is a given function. The ex-

amples will be special cases of an evolutionary equation

(9.4) 6 + Au = (u)

which generates a semigroup Tf(t) for which the variation of constants formula holds,

(9.5) Tf(t)x = S(t)x + fS(t - T)f(u(r))d. S(t)x + U(t)x

where the radius re(S(t)) of the essential spectrum of S(t) satisfies

(9.6) re(S(t)) < exp(-0t), t > 0,

for some p > 0 and

(9.7) U(t) is conditionally completely continuous.

From (9.6), (9.7), it follows that there is an equivalent norm with the property that

Tf(t) is a conditional a-contraction.

Tie idea for the proof is simple. Since re(S(t)) < exp(-0t) for any t > 0. the space
Z can be decomposed as Z = ZI ® Z2 where Z1 . Z2 are independent oif t, invariant under
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S(t), Z 2 is finite dimensional and the spectrum of S(t) restricted to Z 2 is inside the disk

centered at zero with radius exp(-P3t) with f0 > 0. Now one can renorm so that S(t) re-

stricted to Z, has norm < exp(-flt), j > 0.

Our first example concerns the case where A is sectorial. A linear operator A on Z is

sectorial if it is closed, densely defined, such that, for some 0 in (0, ir/2) and M> I I a C R,

the sector

Sao = {X: 0 < Iarg(X - a)l < r, X * a)

is in the resolvent set of A and I(A -A)-'I < M/I -al for A ESa,0 . A semigroup of

operators S(t) on Z is analytic if the map t H. T(t)z is real analytic on 0 < I o for each

z E Z. If A is sectorial, then -A is the generator of an analytic semigroup S(t) and con-
versely (see Friedman [1], Henry [1 ], Pazy [I ], Martin 11 ] ). In addition, if A has compact

resolvent, then S(t) is compact for t > 0, re(S(t)) = 0 for t > 0 and so relation (9.6) in an

appropriate norm is satisfied for any 0 > 0.

If A is sectorial, then one can define the fractional powers (A + a/)a of A + al and

the spaces Z' = D((A + al)) with the graph norm. I fE Xr = C'(Z,, Z), 0 < a .

r > 1. then equation (9.4) generates a semigroup Tf(t) on Z' satisfying (9.5), (9.7) provided

that f takes bounded sets into bounded sets and the resolvent set of A is compact. The spaces

X, Y, Z are X = Y = Z', Z = Z. To satisfy (9.6), additional restrictions must be imposed on A.

A specific example of the latter situation is

(9.8) au/t-Au =f(x,u,u x ) in 2, u=0 on ai

where 52 is a bounded open set in R" with smooth boundary,fE Xr = C'(S2 x R - R. R).

In W = L 2 (12, R), the operator A = -A with domain H01(5) nl H 2 (f2) = Wo' 2 (Q) n W2 . 2
( 2)

is sectorial with compact resolvent. For some restrictions on the rate of growth off(., i. V)

in u, u, there is an a in (0, 1) such that equation (9.8) generates a strongly continuous semi-

group on W'. in this caseX= W', Y= 2 x R x RZ= R.

Other problems that could be considered for (9.5) are cases when f(x, u. v) is indepen-

dent of v; that is, Y = S2 x R. or f(x, u, v) independent of x, v; that is, Y = R. As the

function f is restricted to a smaller class, the generic theory will become more difficult.

One could also change the boundary conditions to some other form or consider sys-

tems of parabolic equations and obtain semigroups of the same qualitative type.

With S2 as in (9.8),fE Xr = C"(2 x R, R), 0 > 0 a constant, consider the equation

(9.9) utt- OAu t -Au =f(x,u) inSi2, u =0 on a2.

Webb [IJ has shown that (9.9) generates a semigroup Tf(t) on D(A) , L 2 (2. R), A = .,

D(A) = H'(Q2) n H2(92). It is possible to show that Tf(t) also satisfies (9.5)-(9.7) (see,
for example. Massatt 14]).

In an appropriate Sobolev space, there is a semigroup generated by the beam equation

(9.0)alu 84U /+k'[u(_) \ a2U au

at, ax 4  JOL0 ax2  aI

....
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satisfying (9.5), (9.6). Relation (9.7) does not appear to be satisfied. Ball [1, however,
has obtained interesting qualitative results on this equation exploiting (9.5), (9.6) and con.
vergence in the weak topology. This suggests that axiom (9.7) should be weakened in some
way.

Retarded functional differential equations generate semigroups satisfying (9.5)-(9.7).
Suppose r > 0, C = C(j-r, 01, Rn),f E Xk = Ck(C, R"), k l I and consider the equation

(9.1)t) X

where x,(O) = x(t + 8), -r < 6 < 0. For any 0 E C, there is a unique solution x(O) of
(9.1 ) with initial value 0 at t = 0. If we assume that x(O)(t) is defined for r > 0 and let
Tf(t)o) = xr(O), t >. 0, then T.(t)o is a strongly continuous semigroup on C Let S(t) be

the semigroup on C generated by i(t) = 0; that is, S(t) = To(t),

t O~) (t + ), t + 0< o,

WO), t+ 6 >0.

Then re(S(t)) = 0 for t > 0. Also,

Tf(f)0(0) S(t)0(0) + f s(t - r)Xo(O)f(T,(,)O)dr

where X() =0 for 0 <0, =I for 0 = 0, S(t - r)Xo(0) = 0 for t - r + 0 <0, =I for
t-r +0 >0. Thus,

(9.12) T()o = Swo + f ,S( - 7)Xof(Tf(r)o)dr = S(t)o + U(t)o

with the interpretation as above. Relation (9.12) is the analogue of (9.5) and one can show
that U(t) is conditionally completely continuous if f takes bounded sets into bounded sets
(see Hale [31). In this case, our spaces X. Y. Z are X = C = Y. Z = R.

For the difference-differential equation

(9.13) x(t) = f(x(t), x(t - r))

the spacesX, Y. ZareX=C, Y= R" x R", Z= R". For the equation

(9.14) (t) = f(x(t - r))

the spaces areX=C Y =R",Z= R".

It is possible to discuss these retarded equations in other spaces than C; for example.

IV x 0 2(1-r. 01, R"). Relation (9.12) and re(S(t)) = 0 for t > 0 still remain true (see

Hale 131 for references).

For the case of infinite delay in equation (9.11), it is not difficult to obtain spaces X
of initial data for which one obtains a strongly continuous semigroup Ty4t) on X satisfying
(9.12) with S(t) a strongly continuous semigroup and U(t) conditionally completely contin-
uous. For the number r,(S(t)) to satisfy (9,6), one must impose some additional conditions
on the space X. For example, if X is a fading memory space, the kernel approaching zero

.. ..-' "." i ' = ". . .. ... 1 I ... .. .. . l . .... I .. ".. ..NIN A
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exponentially is sufficient. Many other spaces assure that (9.6) is satisfied (see Hale and
Kato [I], Schumacher [1]). The survey articles of Hale [41, Corduneanu and Laksmikan-

tham [1] should be consulted for references and more specific properties of equations with
infinite delays.

Some functional differential equations of neutral type also will generate semigroups
satisfying all of the properties mentioned above. For example, this will be true for the

equation

(9.15) - F(t),- i Akxt ( rk)-h A(O)x(t + 0)dO =g(x,)
dt k=I Xtr

with he Ck(R, Rn), g C Ck(C, R"), rk, r > 0, A(O) a continuous n x n matrix, each Ak is
an n x n constant matrix and the zero solution of the difference equation

N|

(9.16) y(t) _ Akyt- rk)= 0

k=I

is uniformly asymptotically stable. The semigroup S(t) is the one generated by the equation

itr N _EAkX(t -rd 0
~ k 0II .

The parameter f'in the semigroup for (9.15) is {Ak, A(-), g, h}. These equations arise
naturally from certain linear hyperbolic partial differential equations with nonlinear bound-
ary conditions (see Hale [31 for references and details).

For g = 0 in (9.15), one also obtains semigroups generated by the functional equation

N
(9.17) y(t) - Akx(t - rk) - h A(O)x( + O)dO 0

k=W

with initial data restricted to Co, where Ca for a E R" is defined by

Ca = 10hC: 0(0) -- Ak(-rk) -z(fOA(0)0(0)dO) =4a
In this case, C0 is a closed subset of C- a nonlinear manifold which depends on the coeffi-
cients Ak and the functions A, h. From the qualitative point of view, it may be desirable
not to consider (9.17), but to consider (9.14) with g = 0 realizing that Ca for each a E R"
is invariant under the semigroup.

There is a tremendous literature on semigroups generated by evolutionary equations
with delays-a combination of equations (9.4) and (9.11). Both the theory and applications
are fairly well developed and it is impossible here to go into this interesting subject. A repre-

sentative selection of the literature can be obtained by consulting the references in Slemrod
It I, [2J, Infante and Walker 1I, Dafermos and Nohel [11, Fitzgibbon 1I.
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The above examples certainly are sufficient motivation to study in more detail semi-
groups T (t) which satisfy (9.5)-(9.7). All questions, remarks, conjectures, etc. in the fol-
lowing pages are made for semigroups which satisfy at least these conditions. Proposition 9.2
motivates the following query.

Question 9.8. If Af is compact, when is there a generic set of f such that Tf(t) is
one-to-one on A.?

Note that the question is for Af and not all of X. It does not seem to be reasonable

to ask the same question for all of X.
For parabolic partial differential equations, general conditions are known which imply

that Tf(t) is one-to-one on all of X (see Henry [1], K. Miller [1] ; for further references, see
Manselli and Miller [1]). In particular, it is true if the elliptic part of the operator is the
Laplacian. For retarded functional differential equations (9.11) with f analytic, T,(t) is one-
to-one on A1 even though it may not be one-to-one on C. This follows because the func-
tions defining Af must be analytic (see Nussbaum [11). The same result is true for neutral
equations with (9.16) uniformly asymptotically stable (see Hale [31). For other references
on retarded equations, see Hale [3]. Mallet-Paret has given an example (unpublished) of a
retarded functional differential equation for which Tf(t) is not one-to-one on Af.

Question 9.9. If f is structurally stable, when is Tf(t) one-to-one on A1 ?
Question 9.10. When is Af generically a manifold or a finite union of manifolds?
For the case of retarded equations (9.11), defined on a compact manifold M without

boundary, which are in some sense close to an ordinary differential equation, Kurzweil I I
has shown that A. is diffeomorphic to M. Oliva [11 has generalized these results giving
other conditions which imply Af is diffeomorphic to M. Henry 1 has discussed this ques-

tion for certain gradient systems of parabolic equations and shown that Af is the union of a
finite number of manifolds. We mention later special retarded functional differential equa-
tions for which Af is the union of a finite number of manifolds.

Of course, an affirmative answer to either of the above questions requires conditions
on the manner in which Tf(t) depends on f and a specification of a class Xr off"s which
gives enough flexibility to move the orbits in any desired direction by variations in f:

TH-oI R:M 9.11. If Af is compact and, for each t > 0, x C- Af, DxT (t)x is the sum

of a contraction operator and a completely continuous operator, then A f has finite Ilaus-
dorf dimension.

For X a separable Hilbert space, this result was proved by Mallet-Paret I 1i. The gen-
eral case in Theorem 9.11 for X an arbitrary Banach space was proved by Maf6 121. Lady-
Yenskaya [I has obtained related results for the Navier-Stokes equation. MaiM 121 proved
even more-that the limit capacity of Af is finite. The limit capacity of Af is defined as
the exponential growth rate of the number of balls of radius exp(-t) that are required to
cover Af when t - o. The limit capacity is always at least as large as the Hausdorff di-
mension. Using results of Cartwright [2], 131, one obtains the following interesting conse-
quence of Theorem 9.11.
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COROLLARY 9.12. If the conditions of Theorem 9.11 are satisfied, then there is an
integer N such that, if there is an x E X such that Tf(t)x is almost periodic, then Tf(t)x is
quasiperiodic with the number of basic frequencies being < N.

Question 9.13. For x E At, when is Tf(t)x continuously differentiable in t for

t E (-oo, oc)?
Note again that this question pertains to Af and not all of X.
For retarded equations (9.11), this is obviously true because Tf(t)x is defined for

t < 0. For neutral equations for which equation (9.16) is uniformly asymptotically stable
and A(O) has a continuous derivative, it is also true. The proof uses the fact that the semi-
group S(t) in (9.5) has essential spectrum inside the unit circle for t > 0 (see Hale [31). It
can be generalized to a neutral equation with the essential spectrum of S(t) bounded away
from the unit circle for t > 0 (see deOliveira [II). Some special cases also have been con-
sidered for functional equations by Hale and deOliveira 111. We remark that Tf(t)x is dif-
ferentiable in t for x E AP. but is not differentiable for every x E C.

For abstract evolutionary equations, no attempt has been made to show that Tf(t)x

is differentiable in t for x only in A. One approach has been to show that'Tf(t)x is con-
tinuously differentiable jointly in t, x for t > 0 and x E Y, a Banach space continuously im-
bedded in X. Typical hypotheses require that T,(t) is a semigroup also on a Banach space Y
which can be continuously imbedded in X, Y belongs to the domain of the generator A of
T,(t) and is a bounded operator from Y to X (see Dorroh and Marsden [11, Marsden and
McCracken (1]). For the case where A is sectorial, Henry [1 gives more detailed results on

the differentiability in t.
It should be easier to prove differentiability in t on Af and there should be an abstract

generalization of the known results for functional differential equations. It will be impossi-
ble to obtain any type of generic theory without having this type of smoothness since one
cannot study the local behavior of orbits on Af by taking a linear approximation.

Our next objective is to discuss more detailed properties of Af and, in particular, hy-
perbolicity.

DEFINITION 9.14. An equilibrium point x is hyperbolic if there are a decomposition

of X as X = X" @ X u and positive constants K, a such that XAs n X = {ol, V , Xu are
invariant under DTf(t)x and

I(DT,(t)x)vl < Ke-", t > O, vEX', 1(DTf(t)x)vI E Ke-', t < 0, v E X " .

It is implicitly assumed that DTf(t)x is defined on X u for t < 0. If Tf(t) is an a-

contraction, then DTf(t)x is an a-contraction, the space XU is finite dimensional and
DTf(t)x is defined on X' for t < 0.

Suppose I' = { Tf(t)x, 0 < t < w) is an w-periodic orbit for which Tf(t)x is continu-
ously differentiable in t. (This is one reason we need an answer to Question 9.13.) Let If
be a hyperplane in X; that is, H = {y E X: h(y) = 0 where h is a nontrivial continuous
linear functional on X). Suppose there are a neighborhood W of zero in H and a function
0: W - X such that 0(0) = x and O(W) is a C0-submanifold of codimension one. Let M



62 JACK K. HALE

be the tangent space to O(W) at x. The set V = O(W) is said to be a transversal to F at x

if dTf(t)x/dt does not belong to M. Let 7r be the Poincare map defined on a neighborhood

U of x in a transversal V to P at x. Then iry is continuously differentiable for y E U.

DEFINITION 9.15. Suppose tie notation is as in the previous paragraph. A periodic

orbit r is hyperbolic if there are a decomposition of M as M = M E Mu and positive con-

stants K, a such that Ms n MU = {0), M-, Mu are invariant under Dir(x) and

[(Dr(x)}nvI < Ke -a , n > 0, u E M ,  I(Dr(x))nvj < Ke an ,  n < 0, v G M u .

One can define the stable and unstable manifolds for hyperbolic equilibrium points and

periodic orbits in the usual way. For functional differential equations (see Hale [3]) and

nonlinear evolutionary equations (9.4) with A sectorial (see Henry [1]), the unstable and

stable manifold intersect transversally at the point or orbit, the unstable manifold is an im-

mersed submanifold of finite dimension and the local stable manifold is diffeomorphic locally

to the stable manifold of the linear approximatio,. In general, it is not possible to define a

global stable manifold because the solution operator Tf(t) is not one-to-one for negative t

when it is defined. An abstract generalization of these results is needed.

DEFINITION 9.16. Suppose Tf(t)x is continuously differentiable in t if x belongs to a

periodic orbit. Then Tf(t) is said to be Kupka-Sniale if:

(i) All equilibrium points are hyperbolic.

(ii) All periodic orbits are hyperbolic.

(iii) The local stable and global unstable manifolds of equilibrium points and periodic

orbits intersect transversally.

Question 9.17. Is the set off E Xr corresponding to Kupka-Snale semigroups generic

in X'?

Some results have recently been obtained. For the general retarded functional differen-

tial equations (9.11) with fE Xr, the set of C'-functions from C(I-h, 0]. Rn ) to R", Mallet-

Paret 12] , [31 has shown the answer to the question is affirmative. 1ff e Cr(Rn x R". R")

as in (9.13), he has also shown the same result is true. ffE Cr(Rn, Rn ) as in (9.14), the

answer to the question is not known. The fundamental part of the proofs always involves

(as was the case in finite dimension) showing that the set off' for which the periodic orbits

with one not in the spectrum of Drr(x) is dense.

For the neutral equations discussed above, deOliveira I]I has shown that the f such

that the equilibrium points are hyperbolic is open and dense. The general KS property has

not been discussed.

For the parabolic equation

(9.18) 111 = u." + f(x, u). 0 < x < I

(9.19) au(t, 0) + PUx(t. 0) = 0, Yu(t, 1) + sux(t, 1) = 0,

the o-limit set of every bounded orbit is a single equilibrium point; that is, a solution of

(9.20) u," + f(x. U) = 0
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satisfying the boundary conditions at x = 0, x = I (see Matano [2j). It is not difficult to

show that these equilibrium points are hyperbolic generically in IfE C1(R x R, R). The

same result has recently been proved by Brunovsky and Chow [I] for the equation

(9.21) ut = u,. + f(u), 0 < x < 1,

with Neumann or Dirichlet boundary conditions, where the function J G C2 (R, R) with the

Whitney topology is independent of the space variable x. The restriction to this smaller class

of functions makes the result nontrivial. The methods appear to apply to the general bound-

ary conditions (9.19).

To see why this is nontrivial, consider the Neumann boundary condition u1(O) =

u,(l) = 0 for the equilibrium equation (9.20). If wo(b, f) is the period of the solution of

(9.20) through the point (u(0), ux(0)) = (b, 0), then one must show that the solutions b of

the equation w(b, f) - 2 = 0 satisfy aw(b. f)lab :3- 0 for a residual set offe C 2(R, R).

There are classical examples of nonlinear functions f where w(b, J) is a constant function of

b (see, for example, Urabe [11). This implies that the derivatives of co(b, f) with respect to

b are very complicated functions of the derivatives off

For the equation

(9.22) ur = Au + f(u) in £2, au + 3u/an-- 0 on M

where 2 is a bounded open connected set in R" with smooth boundary, the corresponding

result is not known. In this case, it is reasonable to consider the parameters as fand 2 and

to prove that the equilibrium points are hyperbolic generically in (f. Q). An important role

should be played by results similar to the ones of Uhllenbeck [II on tile simplicity of the

eigenvalues of the Laplacian operator generically in 2.

To the author's knowledge, property (iii) in the definition of Kupka-Smale systems

has not been discussed for the general equation (9.22). Some partial results of Henry I],

121 are mentioned below.

DEFINITION 9.18. Let S2(f) be the nonwandering set of T,(t). A semigroup T,(t) is

said to be Morse-Smale if Q(f) is the union of a finite number of equilibrium points and

periodic orbits, each hyperbolic with stable and unstable manifolds intersecting transversally.
Question 9.19. Are Morse-Smale systems open and structurally stable?

One of the first important problems in any attempt to discuss these last general ques-

tions is to construct several examples. The first step would be to consider systems which

have properties analogous to gradient systems for ordinary differential equations.

Gradient flows defined by parabolic equations have been analyzed by Henry (II, 121.

In particular, it is shown that the equation

ur = uxx + ,(u-u 3 ) ,  0<x<7r. t>0,
(9.23)

u=0 at x =0.ir

is structurally stable in 1I1(0, I) for X E (0, 9), X IX , 4, A, is a point for 0< X < I,



64 JACK K. HALE

A X is a smooth closed arc with three equilibrium points for I < A < 4, A, is 2-dimensional

and contains 5 equilibrium points for 4 < X < 9.
It is not difficult to see why this should be true if we use our detailed knowledge of

the maximal compact invariant set. In fact, for any X > 0, one can use the invariance orin-

ciple and the function

to show that every solution is bounded and approaches a solution of

(9.24) U 4 + X(u - u 3)=0

with u(O) = u(r) = 0. For each X 0, this equation with these boundary conditions has a finite
number of solutions {ui,j = 1, 2,. , n(X)) with unstable manifolds Wu(ui) of finite dimension.
One can show that this implies A is compact and attracts bounded sets,A x U- = M W (u.,
and is upper semicontinuous in X. If X E (0, 1), n(X) = 1, u =0, Af={ 0}. For X = 4, the
half-period for the solutions of the linear part of (9.24) is ir. For X = 4 and close to 4, there are
two additional solutions u2 , u3 near zero, the solution u = 0 is unstable with dim Wu(o) = 1.
Thus, n(,) = 3 andA X = Wu()U {u2 1 U {u 3 }is a smooth closed arc. At X = 9, there is an-
other bifurcation at zero in a direction independent of the previous bifurcation. This yields

two more solutions-each unstable-and the two dimensional set A, mentioned before.
For retarded functional differential equations, it does not seem possible to have a sys-

tem which is a gradient system. However, there are some equations which have some of the
same qualitative properties. We discuss such an example in some detail since it brings out
many of the difficulties encountered in infinite dimensions and it also leads to many inter-
esting and specific unsolved problems.

Consider the equation

(9.25) . (t= - f, a(-O)g(x(t + O))dO

where g E C2(R, R), a e C2([0, 11, R), f'g - as lxi - -, a(l) = 0, a(s) ;? 0, 0(s) < 0,
a(s) > 0.

Under these hypotheses, every solution of (9.25) is defined and bounded for t > 0. If
C = 7([- 1, 01, R), then the semigroup T,,g(t): C -- C, t > 0, is well defined by the rela-
tion Ta.(t)(O) = x(O)(t + 0), - I < 0 < 0, where x(O) is the solutiop of (9.25) through 0.
If there is an s E [0, 11 such that a'(s) > 0, then the .,-limit set of any solution is an equi-
librium point of (9.25); that is, a zero ofg. If a(s) = 0 for all s E [0, 1] (that is, a is linear),
then the co-limit set of any solution is either an equilibrium point or a closed orbit given by

(Pt, 0 < t < 11, where p(t) is a one-periodic solution of the ordinary differential equation

(9.26) ; + a(0)g(y) = 0.

For a proof of these results, see Hale 13, p. 122].
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Let us consider first tie case where d(s) > 0 for all s E [0, I1 and g has a finite num-
ber of simple zeros fai, / = 1, 2 ... , k}. Let

WS(ai) = {0 E C: Ta.g(t)o - the constant function a, as t - oo},

W-(- ) = f E C: Tag (t)o - the constant function ai as t -* -o,}.

It is not difficult to show that each ai is hyperbolic and dim WU(ai) < 1. Then

k

ao,g = U W(a,)
j=I

is a union of a finite number of manifolds and Ta,g(t) is one-to-one on Aa.9.
It is possible to construct open sets A C C2 ([0, I], R), G in the Whitney topology

on C2(R, R) such that Aag is upper semicontinuous at each (a, g) E A x G. The way to
do this can be discovered from the proof of the above results in Hale [31 and the method

of proof of Proposition 9.7. We can now prove

PROPOSITION 9.20. If a(s) > O for all s G [0, 1], the zeros {aI, I = 1, 2. k} of

g are simple, (a, g) E A x G, and the c-limit set of each Wu(a) \ {a,} is a stable equilibrium,

then (a, g) is structurally stable.

PROOF. Since Aa, is upper semicontinuous and uniformly asymptotically stable, one

can choose a neighborhood U of Aa,.g (as small as desired) and a neighborhood V of (a. g)

in A x G such that Tb.,(t)U C U, t > 0, (b, h) E V. Since the zeros of g are simple, we

have dim WU(c) I.

The assumption that the w-limit set of each Wu(aj)\{a11 is a stable equilibrium im-

plies Aag is one dimensional as shown in Figure 17. The theory of the neighborhood of a

saddle point in Hale [3] implies that the flow in U is given as shown in Figure 18, where
the vertical manifolds have codimension I and Aag has dimension one. This implies that

Ab, has the same topological structure as Aag as well as the same type of flow.

FIGURE 17. FIGURE 18.

One can now ask the following interesting question.

Question 9.21. Suppose a is a fixed function satisfying il(s) > 0 for s E (0, I). Let

Gk= {g which have exactly 2k + I zeros which are all simple}. How many different con-

nected components of structurally stable systems are in Gk?
If k = 0, that is, g has only one zero a, then Aa.g = {a), the constant function a and

all g E Go are structurally stable and there is only one component.
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If k 1, then g E G, has three simple zeros, a, < a 2 < a 3, with a,, a 3 asymptoti-

cally stable and a2 a saddle point. Since the unstable manifold at a2 is smooth, one dimen-
sional and A., is uniformly asymptotically stable, it follows that A.g is a one dimensional
manifold with boundary points a,, a3. Again, all elements of G, are structurally stable.

The topological structure of A,g is not understood for the case when g has given
zeros a, < a 2 < a3 < a 4 < Ns . If we consider g depending on some parameters p with

g(x, ;) = xs at p= 0, then A.,g(p) is 10} for p = 0. There is a center manifold in a neigh-
borhood of x = 0 which is one dimensional and smooth in p. As p varies near / = 0, g(x, A)
can have as many as 5 zeros which must lie on this center manifold. Thus, Aa0 s(p) is either

a point or a one dimensional manifold with boundary for u small. As I increases, it is con-

ceivable that the topological structure ofA... changes. Let us give some intuitive reasons
for why this is possible. The author wishes to acknowledge conversations with John Mallet-
Paret and Shui-Nee Chow which were of great assistance in the remaining discussion of this
section.

g

Fi;utIi.. 19.

FicuR*: 20. FIGURF. 21.

Suppsoe g has five zeros and the general shape shown in Figure 19. Ifa is strictly
convex and very close to the 5-function at zero, then A..g is shown in Figure 20. The com-

plete flow near A,, is shown in Figure 21 with the exponential decay toward Aa,g being
very rapid and much greater than the convergence of the flow on A.,, toward 3.

Ifg'(/) = a, then the flow near 1 is determined by the roots of the characteristic equa-

tion

(9.27) X afo a(-O)eO dO.
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One can show there are an ao and a strictly convex function ao with the property that the

roots of this equation with maximum real part corresponds to a double root. Change g

slightly so that the zero 6 disappears and g has only three zeros. Because of the nature of a

stable node with both eigenvalues equal, there are two distinguished directions along which

3 can be approached along the unstable manifold of y as shown in Figure 22. Choose one

T) i

FIGURE 22.

of these directions. Now, one should be able to move g back so that the double zero 6

appears but the unstable manifold of 6 approaches P from the other distinguished direction.

If this is the case, then the new Aag is shown in Figure 23. Now one can further change g

FIGURE 23.

to make 6 become two distinct zeros 6,, 62 and the resulting Aag is structurally stable.

Thus, there are at least two distinct connected components if g has five zeros. To go from one

of these classes to the other keeping the zeros of g simple, it is not difficult to see that one

must have a saddle connection at some point. Since we have not verified that it is possible

to move g as specified above, we state this as

CONJECTURE 9.22. There is a saddle connection for some (a, g) with a strictly con-

vex and g having five simple zeros. The set of (a, g) for which this is true is not generic.

Another interesting conjecture about equation (9.24) is the following

CONJECTURE 9.23. If d(s) > 0 for s E [0, 11 and the zeros of g are simple, then the

set W = { WS(a ): ai is asymptotically stable} is dense in C

One could try to prove this using the same idea that Henry [I] employed to prove

the same result for equation (9.23). Let a be a saddle point and for any r > 0, r > 0, let

Wi'r(at) = (0 E C: Ta,g(r)P E Ws(a), I Tag(T)O - al < r}. The set W ,r(a) is closed. If it

contains a ball B = (1 + ph: fhi = 1, 0 < p < ro}, then T,,g(r)B has been flattened so

that it is contained in a submanifold of codimension one. In particular, aTa,g(t)(O' t + ph)/ap

at p = 0 is in the tangent space of WS(a). This function D. IT.x(t)h is the solution of the
linear variational equation

... ..... ill ll -- ...... ..~~~ ~~~~... . ........... -a ' '"d I '". .. -,.... _.d . *
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= - f_, a(- O)g'(T,.(t)O I )y(t)

with y0 = h. If the solution operator of the adjoint of this equation is one-to-one, then
tile assertion that Wrr(a) contains a ball is false. In fact, take a vector 1r * 0 such that
(, 0) = 0 for all 0 in the tangent space to W'(a) at Ta,.g()O. Integrating the adjoint equa-
tion for a function z, on [0, r] with z, = il, one obtains, for all h, (zo , h) = (zr, h) =

(?1, DOI Ta.g(T)h) = 0. Thus, zo = 0. Since the solution operator for the adjoint equation
is one-to-one, it follows that 17 = 0. Consequently, the set W, r(a) contains no ball, which
implies that W'r, is closed and nowhere dense. Thus, Ws(a) has no interior. This will prove
the conjecture.



10. Bifurcation in infinite dimensions

For systems of parabolic partial differential equations, retarded functional differential
equations and certain types of neutral equations, several problems of local bifurcation near
an equilibrium point can be discussed in essentially the same way as for ordinary differen-
tial equations. In particular, the results in §4 on bifurcation at a zero eigenvalue and in §5
on bifurcation at a focus extend verbatum (see, for example, Marsden and McCracken [1 I,
deOliveira and Hale [11, Kielhdfer [1)). The center manifold theorem plays an important
role in the theoretical justification of the results. For illustrations of the results in §8 for
the case of a double eigenvalue zero, see Carr (1, Howard [II.

Very little attention has been devoted to the manner in which local bifurcation in-
fluences the global flow defined by the equations. In particular, how does the maximal

compact invariant set change at bifurcation points?
Marchetti et al. (I I have some results for locally compact spaces. More specifically,

they relate the change in stability of Af to the appearance of new invariant sets. It would
be interesting to extend this to Banach spaces for the type of semigroups mentioned in the
previous section. For the gradient equation (9.23), we have discussed in the previous section
the results of Henry (11, (21 on the manner in which the maximal compact invariant set
changes with a parameter.

For the more general equation (9.21) with f depending only on u and boundary con-
ditions (9.19), Brunovsky and Chow [I] have shown the following interesting fact: generi-

cally in fE C 2(R, R), the bifurcations always are saddle-node type; that is, a saddle and
node coalesce and disappear. In particular, this has the following interesting implication
for second order ordinary differential equations. The period c,(b, f) of the solution of

uxx + f(u) = 0 tlrough the point u(O) = a, ux(O) = 0 is a Morse function generically
in f Smoller and Wasserman [1 have also discussed this function in detail for specific
functions f

For the equation *(t) = -f(x(t - I)), where f is piecewise linear with a finite number
of jump discontinuities, Walther III and Chow and Walther [I] have discussed the set Af
and the dynamics on A. in some detail. The hypotheses on f serve as a model for the equa-
tion of Wright (see Nussbaum (21).

For equation (9.25), we discussed how the set Aa, could bifurcate by the creation of
an arc connecting two saddle points. This is always a bifurcation caused by the global prop-
erties of the flow.
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The analogue of the Generic Hopf Bifurcation Theorem (Theorem 5.6) fow infinite
dimensional systems is prevalent in the literature. It seems reasonable to say that it is the
generic situation. On the other hand, we must be careful because there are so many differ-
ent ways to model a problem in infinite dimensions. For example, in equation (9.25), the
vector field should be considered determined by the function a(s)g(x), s E [0, 11, x E R;
that is, as a product of a function of s and a function of x. This is certainly an easier model
to discuss than one which uses a general function h(s, x). However, it is still feasible that
all interesting qualitative behavior of solutions can be obtained by considering the integrand
as a product of two functions. For equation (9.25), the function ao, g, satisfying xg(x) > 0
for x * 0,g'(0) = i, ao(s) = 41r2 (1 - s), is a bifurcation point for every g. The linear vari-
ational equation at zero has all eigenvalues with negative real parts except the purely imagi-
nary ones ± 20. Following the procedure in §5, one can compute the bifurcation function
G(b, a, g) for the periodic orbits near zero with the amplitude of the periodic orbits being

given approximately by b. For the Generic Hopf Bifurcation Theorem to be applicable, one
should have G(b, ao, g) = faogb3 + o(1bl 3) as fbI - 0, 0 g * 0. However, one can show
that 0.g = 0 for all g in the above class! Thus, the bifurcation from the focus is never a
bifurcation of order one. This could not happen if a(s)g(x) were replaced by a general func-
tion h(s, x). For a detailed discussion of this point as well as the nature of the bifurcation
point, see Hale [7].

In the previous section, we noted that it was not known if the Kupka-Smale systems
were generic for i(t) = f(x(t - 1)). This is a problem of the same type as in the previous
paragraph where severe restrictions are imposed on the vector field. We have seen before
that the same difficulties occur in parabolic equations when the nonlinearities depend only
on the dependent variable.

Bifurcation of a periodic orbit to a torus for infinite dimensional systems has been
discussed in some detail (see Iooss and Joseph [1] for references). Holmes and Marsden [11
show that equation (9.10) with a periodic forcing can have homoclinic points.

There are some bifurcation problems that are unique to infinite dimensions. For ex-
ample, consider the scalar parabolic equation

(10.1) u, = Au + f(u) inf , 3u/an = 0 on a12

where fi is a bounded open connected set in Rn with smooth boundary afZ. If W = L2(Q, R),
suppose this equation generates a strongly continuous semigroup on W*, a E (0, 1). Then
every bounded orbit is precompact and the w-limit set of any bounded orbit can be shown
to belong to the set E of equilibrium solutions of (10.1); that is, the set of solutions of the
equation

(10.2) Au + f(u) = 0 in f, au/an = 0 on a1

(see Matano [11). For n = 1, Matano 121 has shown that the u-limit of any bounded orbit
is a single point in F. The same result for arbitrary n is contained in Hale and Massatt [!I
with the additional restriction that every point in a connected component of E (which is not
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a single point) has zero as a simple eigenvalue of the corresponding linear variational equa-

tion. In particular, if all solutions are bounded and the set of equilibrium points is Iinite,

then A f is compact, Af = Ui W"(a) where WU(oi) is the unstable manifold of tile equilib-

rium point ai.

For 2 convex, Casten and Holland 1ll, Matano (II have shown that the only stable

equilibrium points of (10.1) are spatially homogencous; that is, they correspond to constant

functions-the zeros off Chafee [21 previously has proved this result for n = 1. Bardos,

Matano and Smolier III have proved a similar result for one equation of the form (10.1)

coupled with some ordinary differential equations. Casten and Holland Ill, Matano I I
also have proved this type of instability for some other special domains £2.

If n > 2, f(u) = u - u 3 (or any function with similar properties), Matano [II has

shown that there are stable equilibrium points of (10.1) which are not spatially homogene-

ous if the region £2 has certain properties. For example, it is sufficient to have £2 consist

of disjoint open convex connected sets 2i, S22 joined by a channel 23 which is not too

wide compared to the size of U, Q22 (see Figure 24).

FIGtRV 24,

This leads to the following interesting bifurcation problem. Let f(u) Nu - u3 '

X E R, and let 92,, e E R. be a simply connected open set in R" with smooth boundary, SZ0

convex. Let TA.(t) be the semigroup generated by (10.1) for this fand £2t. Then Too(t)

has a unique equilibrium point u = 0 which is uniformly asymoptotically stable and attracts

bounded sets of W*. The maximal compact, invariant set A for (X, C) = (0, 0) is shown

in Figure 25a. For X > 0 and small, there are only three equilibrium points 0, ± XA/ and

A,\o as shown in Figure 25b. Now suppose that the region S2( with increasing C becomes

nonconvex so that the second cigenvalue p2(f) for the Neumann problem for the Laplacian

satisfies f'(0) = A < ii2 (e) for 0 < c < co, f'(0) = I2(cO) and J'(0) > M2 (f) for ( > cO.

The origin becomes a bifurcation point at c e , and A, for c > co in a neighbor ood of

6o is shown in Figure 25c. The solutions bifurcating from 0 are spatially nonhomogeneous.

Suppose that 9l, as e -- 0- approaches the set 92, = 2 1 U £22 U L where , E22' L are

disjoint, f2, £22 are open convex connected sets and L is an (t - 1) dimensional closed

manifold of codimension I joining R I to £22 (in R2 , an arc). There will be some point cl

such that the conditions for Matano's theorem are satisfied for c > C. There will be a sta-

ble spatially nonhomogeneous equilibrium point. Thus, the set A,.,. has had to undergo

another bifurcation. This could not have occurred at the equilibrium Ipoints 0. t " since

± A/ are unilormly asymptotically stable and 0 has a two dimensional unstable manifold.

Thus. it is reasonable to conjecture that the unstable spatially nonh1om1ogeneous solutions
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undergo a bifurcation as shown in Figure 25d at least if the family of regions 5e are chosen
appropriately. The bifurcation diagram is conjectured to be the one shown in Figure 25e for
certain U,,. All the solutions are spatially nonhomogeneous except 0, ± X6 and the stable
ones occur as a secondary bifurcation. It would be interesting to obtain these curves
numerically. Hale and Vegas [Il showed there is an eo > 0 such that the bifurcation
diagram for e > e0 is the one shown in Figure 25e provided that the region 1 satisfies
some conditions in e. The most interesting condition is that the third eigenvalue of the
Laplacian on 11e is bounded away from zero for all e. This restriction arises because the
analysis consists in treating the problem as a bifurcation from a double eigenvalue at e = 0.

S U S

0 0-A,112 0 11/2

FcuRlti 25a. FIGURa: 25b.
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U U
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If the bifurcation diagram is the one depicted in Figure 25e and one introduces an-
other parameter in the vector field f, then one should be able to break all of the symmetries

in the problem and obtain a jumping from one state to another as in buckling problems.

Chafee and Infante [1 have investigated the Dirichlet problem

(10.3) ur =Au+ Xf(u) in 12, u=0 on M2

for 92 = [0, ir, X E R. Under suitable conditions on f including uf(u) > 0 for u * 0, they
show that the only stable equilibrium solution is u = 0 if 0 < X < At, and either of two
functions u,(X) for X > X, where u,(),) is positive on (0, 7r) and u- (X) is negative on (0, IT).
For 92 C R", one should encounter a much more interesting type of behavior by changing

the shape of the region S2 as we did with the Neumann boundary conditions. To the author's
knowledge, this problem has not been investigated.

It would also be interesting to discuss the same equation with mixed boundary condi-
tions varying both the boundary conditions and the region.

For systems of reaction diffusion equations with one space variable and Neumann
boundary conditions, one can also obtain stable equilibrium solutions which are not spatially
homogeneous. This is a bifurcation problem where one creates an instability of the zero

solution by making the linear approximation have a zero eigenvalue by varying the diffusion
coefficients and the linear coupling terms (for references and a detailed discussion, see Fife
111). This corresponds to primary bifurcation from the trivial solution whereas the stable

solution in the previous discussion was created through a secondary bifurcation.
For reaction diffusion equations in an unbounded domain, there are some very inter-

esting bifurcation problems associated with traveling wave solutions. Due to limitations in
space, we can only refer to Fife [11 for references.

Another problem which becomes important in infinite dimensions is the discussion of
semigroups TX(t) which are continuous in a parameter A, but are not continuously differentia-
ble in X. In particular, it is possible to discuss how invariant sets change with X, how the stable
manifolds change with X, etc.? In the qualitative theory, these are fundamental questions. If
T,(t) has a maximal compact invariant set A ., then all of the interesting properties of the orbits
of TA(t) are determined by the behavior of the orbits on A.. The orbits on A, are bounded
and defined on (- -, -s). As we indicated earlier, for some important types of semigroups, the
fact that orbits onAh are defined on (- -, -) implies that T;(t9 forx EA is continuously dif-

ferentiable in t; that is, the elements in A, are "smoother" than a generic element of the under-
lying space X. Can this additional smoothness on A,\ be exploited to discuss how A,\ varies with

X? For differential difference equations will the parameter A being the delays, we indicate why
this is feasible. No corresponding results have been obtained for partial differential equati||s.

The following lemma is crucial to the analysis. It asserts that the fixed points of a

map can be shown to be continuously differentiable in a parameter A by requiring only the
derivative of the map be differentiable with respect to X on the fixed point set. This lenmma
was stated in Hale [31 with tile omission of the obviously necessasy fact that the derivative

in (iv) below is continuous.
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LEMMA 10.1. let F be a closed subset of a Banach space X, Int F # 0, A be an

open subset of a Banach space Y. where Int F denotes the interior of F. Assume that T:
F x A - F, (x, X) -- Tx, X), satisfies the following set of hypotheses:

(i) T(x, -): A -- F is continuous;
(ii) T(-, X): F -- F is continuous and has, for each X, a unique fixed point x()

which is continuous in X;

(iii) if x(A) = F,. then T(x, X) is continuously differentiable in X for (x, X) E F, x A;
(iv) there are an open set F, C X, F C F2, and a 6 E 10, I) such that the derivative

of T(x, A) with respect to x is continuous and has norm < 5 for all (x, X) E F2 x A.

Then the fixed point x(,), A E A, of 7(x. X) is continuously differentiable in X.

PRooM.. The proof is an adaptation of the usual proof of differentiability with re-

spect to parameters. We merely give an outline (see P. Lima [l for details). Let T,(x, X)

=aT(x. A)/ , Tx(x, X) = aT(x, X)/aX and consider the equation

z - T,(x(X), X)z = T,(x(X), X)h

for given h E Y. This equation has a unique solution z(h, X) which is linear in h. If
z(h, N) = z(X)h, then one easily shows that z(,) is continuous in A.

To complete the proof, one must show that z(X) satisfies the definition of the deriva-

tive of x(X); that is,

def
W = x(X + h) - x(A) - z(X)h = o(lh)

as IhI - 0. An easy computation shows that [I - T,,x(X), X))]o - R(w, X, it) = o(Ilhl)
as IhI - 0 where R(y. X. h) = T(x + y, X) - T(x, A) - T(x, X)y is o(lyI) as Lyi -- 0.
One now proves that this implies w = o(flh) as thi -- 0.

We illustrate the application of this theorem to prove the Hopf Bifurcation Theorem
with respect to the delays for a differential difference equation. We impose more restrictions

than in Hale f81 because the proof here will be based on the center manifold theorem. By

showing there is an asymptotically stable local center manifold of dimension two which is

continuously differentiable in X, the problem is reduced to the usual one in ordinary differ-
ential equations.

Suppose SI C R" is an open set (the parameter space), C = C([-r. 01, Rn), f: S2 ,

C - R", L: 1l x C - Rn are continuous, L(a)o is linear in 0, f(a, 0) has continuous first
and second derivatives in 0, f(a, 0) = 0, af(a, 0)/a& = 0. W he notation x(O) = x(t + 0),

-r 4 0 < 0, consider the equation

(10.4) i(t) = L(a)x, + ft", ,).

The first hypothesis is:
(H, ) The matrix A(a. X) = X1 - L(a)e "l. where I is the identity matrix, is continu-

ously differentiable in ct, there is a pair of simple purely imaginamy roots ± ipo , vo > 0, for

= V0 and all other roots of the characteristic equation
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(10.5) det A(a, A) = 0

for a = ao have negative real parts.
Under hypothesis (H I ), there is a 6 > 0 and a simple characteristic root X(a) which is

C 1 in a for la - a0l < 5 and X(ao) = is'o. Then Re X(a) = (a - a0) -r(a) + o(ja - a01)
as a -- ao, where '(a) E Rk is CI in a. Our next hypotheses are:

(H2 ) '(a) * 0.
(H3) Considering L(a)O. f(a, 0) restricted to Rk x C([-r 0], R"), they have a

derivative in a which is continuous in a, 0 in the topology of Rk x C1 ([- r, 01, Rn).
For a a scalar, hypothesis (H2 ) implies there are two eigenvalues crossing the imaginary

axis at a = ao . Hypothesis (H3) does not imply that L(a)o, f(a, 0) have a derivative in a
for (a, 0) E C. For example, if a E (0, r), the function L(t)o = 0(-a) satisfies hypothesis
(H3). This function clearly has no continuous derivative in a for (a, 0) E R x C since the
linear operator L(a) is not continuous in a in the operator topology. In Hale [7], (H3)
was stated incorrectly. The hypothesis did not state that the continuity should be in a
and 0.

THEOREM 10.2. If(HI), (H2 ), (H3) are satisfied, then there is an e > 0 such that for
a E R, fa < e, there is a C'-manifold r. E Rk of codimension one, ra is C I in a, 10 =

[a E Rk: Re ,(a) = 0, 1a - a0 < e} and, for every a E ra, there are a function c.(a, a),
an w(a, a)-periodic function x*(a, a) which is C1 in a and a, W(ao, 0) = wo = 2n/vo ,
x*(a, 0) = 0 and

x*(a0 , 0)(t) = ay cos vet + o(lal) as Jal - 0

where - cos vot is a solution ofi(t) = L(ao)x with y E R", vij = .

To indicate the proof, decompose the space C by the eigenvalues (X(a), K(a)) as
C = Pa 4 Q0, where Pa is two dimensional and spanned by the solutions of i(t) = L(a)x,
corresponding to the eigenvalue (a), M(a). Let . be an n x 2 matrix whose columns are
a basis for Pa. If T0(t) is the semigroup generated by this linear equation and x, = 4),y(t)
+ z, with y E R2 , z E Q, then equation (10.4) is equivalent to

= Boy + Cf(a, 4 ,y + z,),

t
,,Qi + f T Q - s) *f(a, 4ay s) + z,) ds,

where B., Ca are two-by-two matrices C1 in a, with the eigenvalues of Ba being X(a),
X(a), 1 = zo, +1 is the projection of the n x n matrix X0 onto Q., X 0(8) = 0 for 0 < 0,
Xo(0) = I (see Hale [3J for details). There is an estimate II T0 (t - s)lQl 11 < Ke-01, t > 0,
for some positive constants K. a.

To construct a local center manifold by means of simple looking formulas, let us sup.
pose f and its derivative are bounded on 12 x C. if r = C'(R 2 , Q), (y, h) E R2 x 1, let
r(t, y, h), '(0, y, h) =y, be the solution of the equation = B" + Caf(a, J + h( ))
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and define the operator

(10.6) K(a, y)h y, T(_s'f(a, $l(z, y, h)) + h(t(s, y, h))ds.

A fixed point of K(a, h) is a center manifold of (10.4). An application of the Implicit
Function Theorem yields a center manifold M. = {(y, 0): 4 = h(a, y)} with the function

h(a. y) continuous in a, y and having as many continuous derivatives in y as the function
f(ct, o) has in 0 (finite, of course), h(a, 0) = 0. The flow on the center manifold is deter-
mined by the ordinary cquation

(10.7) = B.Y + C. A . y) + h(a, y(t)))

and is given by (y(t), h(a. y())). All solutions with initial values on Ma are defined for
t E (-o, -). If we were considering only a local center manifold, we need here t E f-r, 1),
3 > 0, which would be no loss in generality. If y(t) is a solution of (10.7), this implies that

x Y = ,y(t) + h(a, y(t)) is defined for t E (--o -o). Since x, satisfies (10.4) and $a(O) is
C' in 0 this implies h(a, y(0))(0) is continuously differentiable in 0 for 0 E [-r. 01. Thus,
the fixed point set F, for K(ct, y) must consist of continuously differentiable functions. Hy-
pothesis (H3) implies that condition (iv) of Lemma 10.1 is satisfied. Thus one can conclude
that h(a, y) is C' in (c, y) (or Ck if all hypotheses are satisfied for derivatives up through
order k) and that the vector field in (10.7) is C' in a, y. The proof of Theorem 10.2 is
completed by applying the corresponding result for ordinary equations.

Some very interesting bifurcations occur in problems with several delays (see Hale [81,
Nussbaum [11).

Marsden and McCracken [I, p. 2551 have a version of the Hopf Bifurcation Theorem
for general semigroups of transformations satisfying some smoothness properties. Using
Lemma 10.1, it should be possible to improve those results.

WWWWO
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